K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2023

Ta có:

1/3 + 1/6 + 1/10 + ... + 1/x(x+1):2 = 2001/2003

=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2001/2003

=> 2 [1/6 + 1/12 + 1/20 + ... + 1/x(x+1)] = 2001/2003

=> 2 [1/2x3 + 1/3x4 + 1/4x5 + ... + 1/x+(x+1)] = 2001/2003

=> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1= 2001/2003 : 2

=> 1/2 - 1/x+1 = 2001/4006

=> 1/x+1 = 1/2 - 2001/4006 = 1/2003

=> x+1 = 2003 = 2002 + 1 

=>x = 2002

1 tháng 4 2015

= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1) = 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]

=2[1/2-1/(x+1)]= (x-1)/(x+1) = 2001/2003

==> x=2002

17 tháng 4 2020

x=2002

14 tháng 7 2016

hơi khó 

14 tháng 7 2016

công nhận aoho

14 tháng 7 2016

Vì 1/x(x+1) = 1/x - 1/(x+1) nên 
vế trái = 2(1/2.3 + 1/3.4 + ... + 1/x(x+1)) 
=2( 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/x - 1/(x+1) 
=2( 1/2 - 1/(x+1) 
= x/(x+1) 
Đến đây thì bạn tự thay vào rồi giải tiếp

nha