\(\left|X-\dfrac{2}{5}\right|+\dfrac{1}{2}=\dfrac{3}{4}\)

b,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Câu a hạ bậc rồi áp dụng cosa + cosb

Câu b thì mối liên hệ giữa tan với cot là ra

\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)

\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)

\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)

2 tháng 6 2017

Bài 1:

\(\left(x+4\right)\left(y+3\right)=3\)

\(\Rightarrow\left[{}\begin{matrix}x+4=3\\y+3=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3-4\\y=3-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

Vậy \(x=-1;y=0\)

b) \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)

\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{4}{3}-x=-\dfrac{1}{6}\)

\(\Leftrightarrow-x=-\dfrac{1}{6}-\dfrac{4}{3}\)

\(\Leftrightarrow-x=-\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\)

2 tháng 6 2017

(x+4)(y+3) =3 = 1.3 = 3.1 =(-1)(-3)=(-3)(-1)

x+4 1 3 -1 -3
y+3 3 1 -3 -1
x -3 -1 -5 -7
y 0 -2 -6 -4

1: ĐKXĐ: \(x^3-6x^2+11x-6< >0\)

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\ne0\)

hay \(x\notin\left\{1;2;3\right\}\)

2; ĐKXĐ: \(\left\{{}\begin{matrix}3-2x>=0\\x+1< >-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\x< >-2\end{matrix}\right.\)

3: ĐKXĐ: \(\left\{{}\begin{matrix}x+2< >0\\x-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< >-2\\x< >1\end{matrix}\right.\Leftrightarrow x\in R\)

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

13 tháng 7 2017

Ta có: 2. |3x - 1| + 1 = 5

=> 2. |3x - 1| = 5 - 1 = 4

=> |3x - 1| = 4/2 = 2

=> 3x - 1 = 2 hoặc 3x - 1 = -2

+/ 3x - 1 = 2

=> 3x = 2 +1 = 3

=> x = 3/3 =1

+/ 3x - 1 = -2

=> 3x = -2 + 1 = -1

=> x = -1/3

Vậy x thuộc {1; -1/3}.

13 tháng 7 2017

\(2\left|3x-1\right|+1=5\)

\(\Leftrightarrow2.\left|2x-1\right|=5-1\)

\(\Leftrightarrow\left|2x-1\right|=\dfrac{5-1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

23 tháng 9 2017

a) ta có :

\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)

hay \(m\left(m^2+m-1\right)\ge0\)

=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)

14 tháng 3 2018

a,\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)

<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)

<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{\left(2x-1\right)\left(1-x\right)}{2\left(1-x\right)}=\dfrac{2\left(1-x\right)}{2\left(1-x\right)}-\dfrac{2\left(x^2-x-3\right)}{2\left(1-x\right)}\)

=>\(5x-2+2x-2x^2-1+x=2-2x-2x^2+2x+6\)

<=>\(-2x^2+8x-3=-2x^2+8\)

<=>\(8x=11< =>x=\dfrac{11}{8}\)

vậy..........

b,\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)

<=>\(\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)

=>\(x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-x+1\)

<=>\(3x^2-25x-6=3x^2-x+1\)

<=>\(-24x=7< =>x=\dfrac{-7}{24}\)

vậy..................

câu c tương tự nhé :)