Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|-4x+1\frac{1}{3}\right|=x+2\frac{1}{7}\)
TH1: \(-4x+1\frac{1}{3}=x+2\frac{1}{7}\)
\(-4x-x=2\frac{1}{7}-1\frac{1}{3}\)
\(-5x=\frac{17}{21}\)
=> ...
TH2: \(-4x+1\frac{1}{3}=-x-2\frac{1}{7}\)
...
rùi bn tự lm típ nha!
b) 22x-1+4x+2 = 264
=> 22x: 2 + (22)x+2=264
22x.1/2 + 22x+4=264
22x.1/2 + 22x.24 = 264
22x.(1/2 + 24) = 264
22x. 33/2 = 264
22x = 16
22x = 24
=> 2x = 4
x = 2
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
làm bài & thôi :
(x2 - 2x + 3) \(⋮\)(x - 1)
= x2 - 2x + 3
=) x2 - 2x + 3 - ( x - 1 )
=) x2 - 1
=) x2 - 1 - x( x - 1 )
=) 2 \(⋮\)x - 1
tự làm
a) Ta có: (x2 - 2x + 3) \(⋮\)(x - 1)
<=> [x(x - 1) - (x - 1) + 2] \(⋮\)(x - 1)
<=> [(x - 1)2 + 2] \(⋮\)(x - 1)
Do (x - 1)2 \(⋮\)(x - 1) => 2 \(⋮\)(x - 1)
=> (x - 1) \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Vậy ...
b) (3x - 1) \(⋮\)(x - 4)
<=> [3(x - 4) + 11] \(⋮\)(x - 4)
Do 3(x - 4) \(⋮\)(x - 4) => 11 \(⋮\)(x - 4)
=> (x - 4) \(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng:
x - 4 | 1 | -1 | 11 | -11 |
x | 5 | 3 | 15 | -7 |
vậy ...
c;d tương tự trên
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
\(a,2^{x+2}-2^x=96\)
\(=>2^x.2^2-2^x=96\)
\(=>2^x.\left(4-1\right)=96\)
\(=>2^x.3=96\)
\(=>2^x=96:3=32\)
\(=>2^x=2^5\)
\(=>x=5\)
\(b,720:\left[41.\left(2x-5\right)\right]=2^3.125:5^2\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.125:25\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.5=40\)
\(=>41.\left(2x-5\right)=720:40=18\)
\(=>2x-5=18:41=\frac{18}{41}\)
\(=>2x=\frac{18}{41}+5=\frac{223}{41}\)
\(=>x=\frac{223}{41}:2=\frac{223}{62}\)
\(c,\left(-2x+7\right)^{19}=\left(-2x+7\right)^{19}.\left(x+1\frac{1}{4}\right)^2\)
\(=>\left(-2x+7\right)^{19}:\left(-2x+7\right)^{19}=\left(x+\frac{5}{4}\right)^2\)
\(=>1=\left(x+\frac{5}{4}\right)^2\)
\(=>1^2=\left(x+\frac{5}{4}\right)^2\)
\(=>1=x+\frac{5}{4}\)
\(=>x=1-\frac{5}{4}=-\frac{1}{4}\)
Chúc bạn Hk tốt!!!!
Và giữ đúng lời hứa trên@@!!!!!