Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
Đặt \(2x^2-1=a\)
\(\Rightarrow\frac{a}{x}+\frac{5x}{a-x}=-7\)
\(\Leftrightarrow2x^2-6ax-a^2=0\)
Đặt \(a=tx\)
\(\Rightarrow2x^2-6tx^2-t^2x^2=0\)
\(\Leftrightarrow2-6t-t^2=0\)
Làm nốt nha
a: =(x-y)^2+2(x-y)
=(x-y)(x-y+2)
c: =(x-3)(x+3)+(x-3)^2
=(x-3)(x+3+x-3)
=2x(x-3)
d: =(x+3)(x^2-3x+9)-4x(x+3)
=(x+3)(x^2-7x+9)
e: =(x^2-8x+7)(x^2-8x+15)-20
=(x^2-8x)^2+22(x^2-8x)+85
=(x^2-8x+17)(x^2-8x+5)
a) 17 - 14( x + 1 ) = 13 - 4( x + 1 ) - 5( x - 3 )
<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15
<=> 17 - 14 - 13 + 4 - 15 = -4x - 5x + 14x
<=> -21 = 5x
<=> x = -21/5
b) 7( 4x + 3 ) - 4( x - 1 ) = 15( x + 0, 75 ) + 7
<=> 28x + 21 - 4x + 4 = 15x + 45/4 + 7
<=> 28x - 4x - 15x = 45/4 + 7 - 21 - 4
<=> 9x = -27/4
<=> x = -3/4
c) 3x( x + 1 ) - 2x( x + 2 ) = x2 - 1
<=> 3x2 + 3x - 2x2 - 4x = x2 - 1
<=> 3x2 + 3x - 2x2 - 4x - x2 = -1
<=> -x = -1
<=> x = 1
a, \(17-14\left(x+1\right)=13-4\left(x+1\right)-5\left(x-3\right)\)
\(\Leftrightarrow17-14x-14=13-4x-4-5x+15\)
\(\Leftrightarrow3-14x=24-9x\Leftrightarrow3-14x-24+9x=0\)
\(\Leftrightarrow-21-5x=0\Leftrightarrow5x=-21\Leftrightarrow x=-\frac{21}{5}\)
b, \(7\left(4x+3\right)-4\left(x-1\right)=15\left(x+0,75\right)+7\)
\(\Leftrightarrow28x+21-4x+1=15x+\frac{45}{4}+7\)
\(\Leftrightarrow9x=-\frac{27}{4}\Leftrightarrow x=-\frac{3}{4}\)
c, \(3x\left(x+1\right)-2x\left(x+2\right)=x^2-1\)
\(\Leftrightarrow3x^2+3x-2x^2-4x=x^2-1\)
\(\Leftrightarrow x^2-x=x^2-1\Leftrightarrow x=1\)
(2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
<=>4x^2-4x+1+x^2+6x+9-5x^2+245=0
<=>2x+255=0
<=>2x=-255
<=>x=-255/2
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
Trả lời:
a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)
\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)
\(=x^6-8y^3-x^6+x^3y^3+8y^3\)
\(=x^3y^3\)
b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x^2-3x\)
c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27\)
\(=4x+27\)
chỉ mik điiii
a) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\Leftrightarrow x=\frac{-1}{8}\)
Vậy x = -1/8
b) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\Leftrightarrow x=\frac{-255}{2}\)
Vậy x = -255/2