Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
a,(2x+7)+135=0 b, 1/2x-2/5=1/5
2x+7=0-135 1/2x=1/5+2/5
2x+7=-135 1/2x=3/5
2x=-135-7 x=3/5:1/2
2x=-142 x=6/5
x=-142:2 Vậy x=6/5
x=-71
Vậy x=-71
c, 10-|x+1|=5 d, 1/2x+150%x=2014
|x+1|=10-5 2x=2014
|x+1|=5 x=2014:2
*TH1:x+1=5 *TH2:x+1=-5 x=1007
x=5-1 x=-5-1 Vậy x=1007
x=4 x=-6
Vậy x=4 hoặc x=-6
Giải:
a) \(\dfrac{12}{16}=\dfrac{-x}{4}=\dfrac{21}{y}=\dfrac{z}{80}\)
\(\Rightarrow x=\dfrac{12.-4}{16}=-3\)
\(\Rightarrow y=\dfrac{16.21}{12}=28\)
\(\Rightarrow z=\dfrac{12.80}{16}=60\)
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)\) =0
\(\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(x.\left(\dfrac{1}{3}+\dfrac{2}{5}\right)\) \(=0+\dfrac{2}{5}\)
\(x.\dfrac{11}{15}\) \(=\dfrac{2}{5}\)
x \(=\dfrac{2}{5}:\dfrac{11}{15}\)
x \(=\dfrac{6}{11}\)
c) (2x-3)(6-2x)=0
⇒2x-3=0 hoặc 6-2x=0
x=3/2 hoặc x=3
d) \(\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-2}{3}-\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-13}{6}\)
\(2x-5=\dfrac{-13}{6}:\dfrac{1}{3}\)
\(2x-5=\dfrac{-13}{2}\)
\(2x=\dfrac{-13}{2}+5\)
\(2x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:2\)
\(x=\dfrac{-3}{4}\)
e) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}:2\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{8}\) hoặc \(\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-1}{8}\)
\(x=\dfrac{11}{12}\) hoặc \(x=\dfrac{5}{12}\)
a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
d) (x - 2)^2 = 1
= x = 2 + 1 = 3
c) (x^2 + 1). (x + 2011) = 0
Tim x:
a) x^2 + 2x = 0
= \(x^2+2x=0\)
= \(x^2=0:2=0\)
b) (x - 3) + 2x^2 - 6x = 0
Rút gọn thừa số chung :
\(2x^2-5x-3=0\)
x = \(\frac{-1}{2}\)x = 3
=\(x^2=0\)
=> x = 0