Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{3,5}{15}=\dfrac{-2}{x}\)
\(\Rightarrow x=\dfrac{15.-2}{3,5}\)
\(\Rightarrow x=-8,57\)
b) \(2\left(3x-2\right)-3\left(x-2\right)-=-1\)
\(\Rightarrow6x-4-3x+6=-1\)
\(\Rightarrow6x-3x=-1+4-6\)
\(\Rightarrow3x=-3\)
\(\Rightarrow x=-\dfrac{3}{3}=-1\)
a) \(\dfrac{x.2}{-15}=\dfrac{-5}{3}\)
\(\dfrac{x.2}{-15}=\dfrac{25}{-15}\)
x.2=25
x=12,5
b) \(\dfrac{x-1}{-12}=\dfrac{-3}{x-1}\)
(x-1)2=-3.(-12)
(x-1)2=36
⇒(x-1)2\(\Rightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
a) \(x\)là giá trị tuyệt đối của 1 số nên \(x\ge0\)
\(\Rightarrow x.\left|x-4\right|=x\)
Với x = 0 :
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Với x > 0
TH1 : \(x< 4;\)ta có:
\(x.\left(4-x\right)=x\)
\(4x-x^2=x\)
\(x^2=4x-x=3x\Rightarrow x=3\)
TH2 : \(x\ge4;\)ta có:
\(x\left(x-4\right)=x\)
\(x^2-4x=x\)
\(\Rightarrow x^2=5x\)
\(\Rightarrow x=5\)
Vậy \(x\in\left\{0;3;4;5\right\}\)
a)\(1,5-2\left|x\right|=-0,5\)
\(\Leftrightarrow2\left|x\right|=1,5+0,5\)
\(\Leftrightarrow\left|x\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\sqrt{x}=\dfrac{6}{2}=3\Leftrightarrow x=9\left(tm\right)\)
a. \(2\sqrt{x}+1=7\)
\(2\sqrt{x}=7-1\)
\(2\sqrt{x}=6\)
\(\sqrt{x}=6:2\)
\(\sqrt{x}=3\)
\(\Rightarrow\) \(x=3^2\)
\(x=9\)
Lời giải:
$x+\frac{2}{-15}=\frac{-5}{3}$
$x=\frac{-5}{3}-\frac{2}{-15}=\frac{-5}{3}+\frac{2}{15}$
$x=\frac{-23}{15}$
a) \(1=\left(2x+0,5\right)^{600}\)
\(\Rightarrow1^{600}=\left(2x+0,5\right)^{600}\)
\(\Rightarrow\left[{}\begin{matrix}2x+0,5=1\\2x+0,5=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0,5\\2x=-1,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,25\\x=-0,75\end{matrix}\right.\)
b) \(\left(x-0,125\right)^2=0,25\)
\(\Rightarrow\left(x-0,125\right)^2=0,5^2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
c) \(\left(x-3\right)^{11}=\left(x-3\right)^{41}\)
\(\Rightarrow\left(x-3\right)^{11}-\left(x-3\right)^{41}=0\)
\(\Rightarrow\left(x-3\right)^{11}\left[1-\left(x-3\right)^{30}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`1 = (2x + 0,5)^600`
`=> (2x+0,5)^600 = (+-1)^600`
`=> \text {TH1: } 2x + 0,5 = 1`
`=> 2x = 1 - 0,5`
`=> 2x = 0,5`
`=> x = 0,5 \div 2`
`=> x = 0,25`
`\text {TH2: } 2x + 0,5 = -1`
`=> 2x = -1 - 0,5`
`=> 2x = -1,5`
`=> x = -1,5 \div 2`
`=> x = -0,75`
Vậy, `x \in {-0,75; 0,25}.`
`b)`
`(x - 0,125)^2 = 0,25`
`=> (x - 0,125)^2 = (+-0,5)^2`
`=> `\(\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,5+0,125\\x=-0,5+0,125\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
Vậy, `x \in {-0,375; 0,625}.`
`c)`
`(x - 3)^11 = (x - 3)^41`
`=> (x - 3)^11 - (x - 3)^41 = 0`
`=> (x - 3)^11 * [ 1 - (x - 3)^30] = 0`
`=>`\(\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\1-\left(x-3\right)^{30}=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy, `x \in {3; 4}.`
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
a) \(\left|x\right|=3,5\)
\(\Rightarrow x=\begin{cases}-3,5\\3,5\end{cases}\)
b) \(\left|x-1\right|=3,5\)
\(\Rightarrow x=3,5+1\)
\(\Rightarrow x=4,5\)
a)|x|=3,5
=>x=3,5 hoặc -3,5
b)|x-1|=3,5
=>x-1=3,5 hoặc -3,5
Xét x-1=3,5
=>x=4,5
Xét x-1=-3,5
=>x=-2,5