Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-2\right)+x-2=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(x^2-2x+1=9\\ \Leftrightarrow\left(x-1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x-1=-3\\x-1=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(7x^2=2x\\ \Leftrightarrow7x^2-2x=0\\ \Leftrightarrow x\left(7x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\7x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{7}\end{matrix}\right.\)
\(x^2-6x=8\\ \Leftrightarrow x^2-6x-8=0\\ \left(x^2-6x+9\right)-17=0\\ \Leftrightarrow\left(x-3\right)^2-\sqrt{17^2}=0\\ \Leftrightarrow\left(x-3-\sqrt{17}\right)\left(x-3+\sqrt{17}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{17}=0\\x-3+\sqrt{17}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{17}\\x=3-\sqrt{17}\end{matrix}\right.\)
\(=x^2+6x+9-17=\left(x+3\right)^2-17=\left(x+3-\sqrt{17}\right)\left(x+3+\sqrt{17}\right)\)
\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)
\(\Leftrightarrow-11x=-22\)
hay x=2
b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)
\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)
\(\Leftrightarrow x=-5\)
Biểu thức xác định khi x 2 - 36 ≠ 0 , x 2 + 6 x ≠ 0 , 6 – x ≠ 0 và 2x – 6 ≠ 0
x 2 - 36 ≠ 0 ⇒ (x – 6)(x + 6) ≠ 0 ⇒ x ≠ 6 và x ≠ -6
x 2 + 6 x ≠ 0 ⇒ x(x + 6) ≠ 0 ⇒ x ≠ 0 và x ≠ -6
6 – x ≠ 0 ⇒ x ≠ 6
2x – 6 ≠ 0 ⇒ x ≠ 3
Vậy x ≠ 0, x ≠ 3, x ≠ 6 và x ≠ -6 thì biểu thức xác định.
Ta có:
Vậy biểu thức không phụ thuộc vào biến x.
1. \(\left(x-y\right)\left(6x^2-4y^2+\dfrac{1}{2}xy\right)\)
\(=6x^3-4xy^2+\dfrac{1}{2}x^2y-6x^2y+4y^3-\dfrac{1}{2}xy^2\)
\(=6x^3+4y^3-\dfrac{11}{2}x^2y-\dfrac{9}{2}xy^2\)
===========
2. \(\left(6x-1\right)\left(3+x\right)+\left(2x+5\right)\left(-3x\right)\)
\(=18x+6x^2-3-x-6x^2-15x\)
\(=2x-3\)
Chúc bạn học tốt!
(6x - 5)(x + 2) - 6x2 = 8
=> 6x(x + 2) - 5(x + 2) - 6x2 = 8
=> 6x2 + 12x - 5x - 10 - 6x2 = 8
=> (6x2 - 6x2) + (12x - 5x) - 10 = 8
=> 7x - 10 = 8
=> 7x = 18
=> x = 18/7
\(\left(6x-5\right)\left(x+2\right)-6x^2=8\)
\(\Leftrightarrow6x.\left(x+2\right)-5.\left(x+2\right)-6x^2=8\)
\(\Leftrightarrow6x^2+12x-5x-10-6x^2=8\)
\(\Leftrightarrow\left(6x^2-6x^2\right)+\left(12x-5x\right)-10=8\)
\(\Leftrightarrow7x-10=8\Leftrightarrow x=\frac{18}{7}\)