Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Ta có: 2x=3y
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
hay \(\dfrac{x}{9}=\dfrac{y}{6}\left(1\right)\)
Ta có: 4y=6z
nên \(\dfrac{y}{6}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{4}=\dfrac{x+2y-3z}{9+2\cdot6-3\cdot4}=\dfrac{9}{9}=1\)
Do đó: x=9; y=6; z=4
a) \(\dfrac{x}{y}=-\dfrac{3}{5}\) và x-2y=-52
Ta có: \(\dfrac{x}{y}=-\dfrac{3}{5}\Rightarrow\dfrac{x}{-3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{-3}=\dfrac{y}{5}=\dfrac{x-2y}{\left(-3\right)-2\times5}=\dfrac{-52}{-13}=4\)( vì x-2y = -52)
Suy ra: \(\dfrac{x}{-3}=4\Rightarrow x=4\times\left(-3\right)=-12\)
\(\dfrac{y}{5}=4\Rightarrow y=4\times5=20\)
Vậy x= -12, y= 20
b)3x=y=6z và 2x+3y-4z = 90
Ta có 3x=y=6z \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{1}=\dfrac{2x+3y-4z}{2\times2+3\times6-4\times1}=\dfrac{90}{18}=5\)(vì 2x+3y-4z = 90)
Suy ra: \(\dfrac{x}{2}=5\Rightarrow x=5\times2=10\)
\(\dfrac{y}{6}=5\Rightarrow y=5\times6=30\)
\(\dfrac{z}{1}=5\Rightarrow z=5\times1=5\)
Vậy x= 10, y= 30, z = 5
còn câu c)\(\dfrac{2x}{3}=\dfrac{6y}{5}=\dfrac{4z}{3}\) và x+2y-3z=99
Ta có : \(\dfrac{2x}{3}=\dfrac{6y}{5}=\dfrac{4z}{3}\)
\(\Rightarrow\dfrac{2x}{3\times12}=\dfrac{6y}{5\times12}=\dfrac{4z}{3\times12}\)
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{10}=\dfrac{z}{9}\)
Sau đó Mai áp dụng tính chất dãy tỉ số = nhau rùi lm như trên nha
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha
Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)
Thay (1) vào P
=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)
=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)
=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)
3: 10x=6y=5z
\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)
hay x/3=y/5=z/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)
Do đó: x=36; y=60; z=72
4: Ta có: 9x=3y=2z
nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)
hay x/2=y/6=z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)
Do đó: x=20; y=60; z=90
4x = 3y => \(\frac{x}{3}=\frac{y}{4}\)
3y = 6z => \(\frac{y}{6}=\frac{z}{3}\) => \(\frac{y}{4}=\frac{z}{2}\)
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\) => \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{6}\)
Áp dung dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{6}=\frac{x-2y+3z}{3-8+6}=\frac{5}{1}=5\)
=> x = 15; y = 20 và z = 10
\(4x=3y=6z\)
\(\frac{4x}{12}=\frac{3y}{12}=\frac{6z}{12}\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)
\(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{6}=\frac{x-2y+3z}{3-8+6}=\frac{5}{1}=5\)
\(\begin{cases}x=15\\y=20\\z=10\end{cases}\)