\(\sqrt{16x-16}\)+\(\sqrt{49x-49}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x>=1

\(PT\Leftrightarrow8\sqrt{x-1}+7\sqrt{x-1}-\sqrt{x-1}=46\)

=>\(14\sqrt{x-1}=46\)

=>\(\sqrt{x-1}=\dfrac{23}{7}\)

=>\(x-1=\dfrac{529}{49}\)

=>\(x=\dfrac{578}{49}\)

9 tháng 10 2023

sai r bn ơi

 

 

29 tháng 8 2020

a, \(\sqrt{4-5x}=12\Leftrightarrow4-5x=144\Leftrightarrow5x=140\Leftrightarrow x=28\)

b,ĐK :  \(x\ge7\)

 \(\sqrt{x^2-14x+49}-3x=1\Leftrightarrow\sqrt{\left(x-7\right)^2}=3x+1\)

\(\Leftrightarrow x-7=3x+1\Leftrightarrow-2x-8=0\Leftrightarrow x=-4\)( vô lí )

c, Bn làm nốt nhé 

29 tháng 8 2020

a) đk: \(x\le\frac{4}{5}\)

Ta có: \(\sqrt{4-5x}=12\)

\(\Leftrightarrow\left|4-5x\right|=144\)

\(\Rightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

\(\Rightarrow x=-28\left(tm\right)\)

b) Ta có: \(\sqrt{x^2-14x+49}-3x=1\)

\(\Leftrightarrow\sqrt{\left(x-7\right)^2}=1+3x\)

\(\Leftrightarrow\left|x-7\right|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=3x+1\\x-7=-3x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-8\\4x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)

26 tháng 9 2018

a)\(\Leftrightarrow\)\(7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)

 \(\Leftrightarrow\) \(3\sqrt{x-2}=8\)

  \(\Leftrightarrow\) \(\sqrt{x-2}=24\)

\(\Leftrightarrow\)\(x-2=576\)\(\Leftrightarrow x=578\)

c)\(\Leftrightarrow GTTĐ\left(x-1\right)=\sqrt{2}-1\)\(TH1:x-1>0\)

\(\Rightarrow x-1=\sqrt{2}-1\)\(\Leftrightarrow x=\sqrt{2}\)

\(TH2:x-1< 0\)

\(\Rightarrow1-x=\sqrt{2}-1\)

\(\Leftrightarrow x=2+\sqrt{2}\)

d)\(TH1:x-10=0\Rightarrow x=10\)

\(TH2:\sqrt{x-4}=0\Rightarrow x=4\)

câu b) thì mik cần thêm time

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

25 tháng 7 2019

\(\text{Câu 1: Sửa đề}\)

\( a)M = \left( {1 - \dfrac{{4\sqrt x }}{{x - 1}} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{x - 2\sqrt x }}{{x - 1}}\\ M = \left[ {1 - \dfrac{{4\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \dfrac{1}{{\sqrt x - 1}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \left[ {1 + \dfrac{{ - 4\sqrt x + \sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \left[ {1 + \dfrac{{ - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right) - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \sqrt x \left( {\sqrt x - 3} \right).\dfrac{1}{{x - 2\sqrt x }}\\ M = \dfrac{{x - 3\sqrt x }}{{x - 2\sqrt x }} \)

\( b)M = \dfrac{1}{2} \Rightarrow \dfrac{{x - 3\sqrt x }}{{x - 2\sqrt x }} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( {x - 3\sqrt x } \right) = x - 2\sqrt x \\ \Leftrightarrow 2x - 6\sqrt x = x - 2\sqrt x \\ \Leftrightarrow - 4\sqrt x = - x\\ \Leftrightarrow 16x = {x^2}\\ \Leftrightarrow 16x - {x^2} = 0\\ \Leftrightarrow x\left( {16 - x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 16 - x = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 16 \end{array} \right. \)

25 tháng 7 2019

\(\text{Câu 2}:\)

\( a)\sqrt {49x - 98} - 14\sqrt {\dfrac{{x - 2}}{{49}}} = 3\sqrt {x - 2} + 8\left( {x \ge 2} \right)\\ \Leftrightarrow 7\sqrt {x - 2} - 3\sqrt {x - 2} = 8 + 14\sqrt {\dfrac{{x - 2}}{{49}}} \\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 14\sqrt {\dfrac{{x - 2}}{{49}}} \\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 14\dfrac{{\sqrt {x - 2} }}{7}\\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 2\sqrt {x - 2} \\ \Leftrightarrow 4\sqrt {x - 2} - 2\sqrt {x - 2} = 8\\ \Leftrightarrow 2\sqrt {x - 2} = 8\\ \Leftrightarrow \sqrt {x - 2} = 4\\ \Leftrightarrow x - 2 = 16\\ \Leftrightarrow x = 16 + 2 = 18 \text{(thỏa mãn điều kiện)} \)

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

17 tháng 9 2019

\(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)

\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(=\sqrt{x+1}\left(4-3+2+1\right)=4\sqrt{x+1}\)

17 tháng 9 2019

B=4x-3x+2x+x+10

NV
23 tháng 9 2019

a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)

d/ Hàm số xác định với mọi x

e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)

f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)