Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow8x\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{0;3;-3\right\}\)
b: \(\Leftrightarrow x^2-4x+4-x^2-2x+3=12\)
=>-6x=5
hay x=-5/6
a/ \(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)
<=> \(\left(2x-3-3x-2\right)\left(2x-3+3x+2\right)=5x\left(2-x\right)\)
<=> \(\left(-x-5\right)\left(5x-1\right)=5x\left(2-x\right)\)
<=> \(-5x^2-25x+x+5=10x-5x^2\)
<=> \(10x+25x-x=5\)
<=> \(34x=5\)
<=> \(x=\frac{5}{34}\)
b/ pt <=> \(2^3x^3-3.2^2.x^2.1+3.2.x.1^2-1^3=0\)
<=> \(\left(2x-1\right)^3=0\)
<=> 2 x - 1 = 0
<=> x = 1/2.
a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
=>3x-9-10x+2=-4
=>-7x-7=-4
=>-7x=3
=>x=-3/7
b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)
=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)
=>10-2x+7x-14=4x-4+x
=>5x-4=5x-4
=>0x=0(luôn đúng)
Vậy: S=R\{0;2}
Sửa đề: 8x-1
=>2(8x^2-x)(8x^2-x+2)-126=0
=>2[(8x^2-x)^2+2(8x^2-x)]-126=0
=>(8x^2-x)^2+2(8x^2-x)-63=0
=>(8x^2-x+9)(8x^2-x-7)=0
=>8x^2-x-7=0
=>x=1 hoặc x=-7/8
\(a,x\left(8x-2\right)-8x^2+12=0\)
\(\Rightarrow8x^2-2x-8x^2+12=0\)
\(\Rightarrow-2x+12=0\)
\(\Rightarrow-2x=-12\)
\(\Rightarrow x=6\)
\(b,x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Rightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Rightarrow-9x-1=0\)
\(\Rightarrow-9x=1\)
\(\Rightarrow x=\frac{-1}{9}\)
a) x(8 - 2) - 8x2 + 12 = 0
x(8 - 2) - 8x2 = 12 - 0
x(8 - 2) - 8x2 = 12
2x = 12
x = 6
b) x(4x - 5) - (2x + 1)2 = 0
9x - 1 = 0
9x = 0 + 1
9x = 1
x = -1/9
\(\frac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\frac{x^2\left(3x^2-2x+1\right)-2x\left(3x^2-2x+1\right)-5\left(3x^2-2x+1\right)}{3x^2-2x+1}\)
\(=\frac{\left(3x^2-2x+1\right)\cdot\left(x^2-2x-5\right)}{3x^2-2x+1}\)
\(=x^2-2x-5\)
\(\frac{2x^3-9x^2+19x-15}{x^2-3x+5}\)
\(=\frac{2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)}{x^2-3x+5}\)
\(=\frac{\left(x^2-3x+5\right)\left(2x-3\right)}{x^2-3x+5}\)
\(=2x-3\)
Đặt 8x^2=t => t>=0
\(t^2-9-\left(t-1\right)=54\Leftrightarrow t^2-t+1-9=54\)
\(t^2-t+\frac{1}{4}=54+8+\frac{1}{4}=\frac{249}{4}\) lẻ thế nhỉ
\(\left(t-\frac{1}{2}\right)^2=\frac{249}{4}\Rightarrow\left[\begin{matrix}t=\frac{1-\sqrt{249}}{2}< 0\left(loai\right)\\t=\frac{1+\sqrt{249}}{2}\end{matrix}\right.\)
\(\left\{\begin{matrix}x< 0\\8x^2=\frac{1+\sqrt{249}}{2}\end{matrix}\right.\Rightarrow x=\frac{-\sqrt{1+\sqrt{249}}}{16}\)
thanks