Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(a,\left(x-1\right)^2=0\\ \Leftrightarrow x=1\\ b,\left(x-3\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-3\right)^2=1\)
\(\Rightarrow\left(x-3\right)^2=1^2\)
\(\Rightarrow\left[{}\begin{matrix}x-3=-1\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
y=\(\frac{x^4-2x^3+1}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2x+2}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2\left(x+1\right)}{x^2+1}\)
vì x và y đều nguyên nên \(x^2\)+1 phải là ước của x+1
vì x+1 <= \(x^2\)+1
nên ta có \(x^2\)+1 = x+1
=> x=0 hoặc x=1
với x=0 thì y=1
với x=1 thì y =0
vậy ta có (x;y)=(0;1); (1;0)
1) \(-x-3=-2\left(x+7\right)\\ \Rightarrow-x-3=-2x-14\\ \Rightarrow-x+2x=-14+3\\ \Rightarrow x=-11\)
2) \(A=\frac{12}{\left(x+1\right)^2+3}\\ Tac\text{ó}:\left(x+1\right)^2\ge0\\ \Rightarrow\left(x+1\right)^2+3\ge3\\ \Rightarrow A\le\frac{12}{3}=4\)
Max A=4 khi x=-1
3) Đăt : \(n^2+4=k^2\\ \Rightarrow k^2-n^2=4\\ \Rightarrow\left(k-n\right)\left(k+n\right)=4\)
lập bang ra rồi tính
Bài 4:
1,
\(Ư\left(250\right)=\left\{1;2;5;10;25;50;125;250\right\}\)
Các số có hai chữ số thuộc Ư(250) là 10;25;50
2,
\(B\left(11\right)=\left\{0;11;22;33;44;55;66;77;88;99;110;121;132;143;154;165;....\right\}\)
Các số có hai chữ số thuộc về B(11) là 11;22;33;44;55;66;77;88;99
Bài 3:
B(3) là các số chia hết cho 3, dấu hiệu là tổng các chữ số của số đó là một số chia hết cho 3, bao gồm: 126; 201; 312; 345; 501; 630
B(5) là các số chia hết cho 5, dấu hiệu tận cùng các số đó là 0 hoặc 5, bao gồm: 125; 205; 220; 345; 595; 630; 1780
\(\dfrac{1}{2}+\dfrac{-1}{3}+\dfrac{-2}{3}\le x< \dfrac{-3}{5}+\dfrac{1}{6}+\dfrac{-2}{5}+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{1}{2}+\left(\dfrac{-1}{3}+\dfrac{-2}{3}\right)\le x< \left(\dfrac{-3}{5}+\dfrac{-2}{5}\right)+\left(\dfrac{1}{6}+\dfrac{3}{2}\right)\)
\(\Leftrightarrow\dfrac{1}{2}+\left(-1\right)\le x< -1+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}\le x< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{-3}{6}\le x< \dfrac{4}{6}\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0;1;2;3\right\}\)
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< =x< =-\dfrac{12}{5}:\dfrac{7}{5}=\dfrac{-12}{7}\)
=>-10<=x<=-12/7
hay \(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< =x< =-\dfrac{2}{3}\cdot\dfrac{1}{8}\)
=>-13/9<=x<=-1/12
hay \(x=-1\)