Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=\frac{x}{y}\Leftrightarrow y=\frac{1}{y}\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
Thay y vào pt x-y=xy để tìm x
a) x - y = 2(x+y) => x - y = 2x + 2y => x - 2x = y + 2y => - x = 3y => x: y = -3 và x = -3y
Mà x - y = x: y nên (-3y) - y = -3 => -4y = -3 => y = 3/4 => x = -9/4
b) Tương tự,
a) x - y = 2(x+y)
=> x - y = 2x + 2y
=> x - 2x = y + 2y
=> - x = 3y
=> x: y = -3 và x = -3y
do x - y = x: y nên (-3y) - y = -3
=> -4y = -3
=> y = \(\frac{3}{4}\)
=> x = \(-\frac{9}{4}\)
P/s hok tốt
ĐK: y khác 0
- Nếu x = 0 thì x + y = xy <=> 0 + y = 0 <=> y = 0 mâu thuẫn điều kiện - Loại
- => x khác 0.
Khi đó: \(xy=\frac{x}{y}\Leftrightarrow y^2=1\)
- Nếu y = 1 thì: x + 1 = x => không có x thỏa mãn - loại
- Nếu y = -1 thì: x - 1 = -x => \(2x=1\Rightarrow x=\frac{1}{2}\)
PT có nghiệm duy nhất x = 1/2; y = -1
a) x - y = xy => x = xy + y = y.(x + 1)
=> x : y = x + 1 = x - y
=> y = -1
=> x = -1.(x + 1) = -x - 1
=> x + x = -1
=> 2x = -1 => x = -1/2
Vậy x = -1/2; y = -1
b) x.(x+y+z) + y(x+y+z) + z(x+y+z) = 3 + 9 + 4
=> (x+y+z).(x+y+z)=16
=> x+y+z = 4 hoặc -4
Đến đây bn lm từng trường hợp là ra x; y; z