Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải:
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{-28}{14}=-2\)
+) \(\frac{5x}{50}=-2\Rightarrow x=-20\)
+) \(\frac{y}{6}=-2\Rightarrow y=-12\)
+) \(\frac{2z}{42}=-2\Rightarrow z=-42\)
Vậy x = -20, y = -12, z = -42
b) Giải:
Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
+) \(\frac{x}{10}=8\Rightarrow x=80\)
+) \(\frac{y}{15}=8\Rightarrow y=120\)
+) \(\frac{z}{21}=8\Rightarrow z=168\)
Vậy x = 80, y = 120, z = 168
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=-\frac{28}{14}=-2\)
\(\Rightarrow\begin{cases}\frac{x}{10}=-2\rightarrow x=\left(-2\right)\cdot10=-20\\\frac{y}{6}=-2\rightarrow y=\left(-2\right)\cdot6=-12\\\frac{z}{21}=-2\rightarrow z=\left(-2\right)\cdot21=-42\end{cases}\)
b) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
\(\Rightarrow\begin{cases}\frac{x}{10}=8\rightarrow x=8\cdot10=80\\\frac{y}{15}=8\rightarrow y=8\cdot15=120\\\frac{z}{21}=8\rightarrow z=8\cdot21=168\end{cases}\)
3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra x/10=2 => x=20
y/15=2 =>y=30
z/21=2 => z=42
Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42
3x = 2y => x = (2/3)y (1)
7y = 5z => z =(7/5)y (2)
thay (1) và (2) vào x - y + z = 32 ta được :
(2/3)y - y + (7/5)y = 32
=> (2/3 -1 + 7/5)y = 32
=> (16/15)y = 32
=> y = 30
thay y = 30 vào (1) và (2) ta được x = 20 và z = 42
kl: x = 20 , y = 30 ,z = 42
\(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15};7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\\ \Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+2z}{10-15+42}=\dfrac{-111}{37}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-30\\y=-45\\z=-63\end{matrix}\right.\)
Thks nha