Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)
Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)
Tương tự: \(y+z=2x,z+x=2y\)
Khi đó: \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)
Vậy A=8.
Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn
\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : x+y+z=x/y+z+1=y/z+x+1=z/x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z=1/2 ; x=1/2.(y+z+1) ; y=1/2.(x+z+1) ; z = 1/2.(x+y-2)
=> x=0 ; y=1/2 ; z=-1/2
Vậy .........
k mk nha
ak sorry mk nhầm đáp án đáp án là : x=y=1/2 và z=-1/2 nha
Tk mk nha !
ta có :\(\dfrac{y+z-2015x}{x}=\dfrac{z+x-2015y}{y}=\dfrac{z+y-2015z}{z}\)
=>\(\left(\dfrac{y+z-2015}{x}+2016\right)=\left(\dfrac{z+x-2015y}{y}+2016\right)=\left(\dfrac{x+y-2015z}{z}+2016\right)\)
(=)\(\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)
*Nếu x+y+z\(\ne\)0
=>\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=1.1.1=1
*Nếu x+y+z=0
=>x=y=z
=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=2.2.2=8
Cho hỏi ko phải cô giáo có dc làm ko:v
Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)
\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)
Xét \(x+y+z\ne0\) ta có:
\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)
\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)
\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó:
\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)