K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)  hay   \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)  =>  \(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}=\frac{3x-4y+5z}{54-64+75}=\frac{65}{65}=1\)

suy ra:  \(\frac{3x}{54}=1\)  =>  \(x=18\)

             \(\frac{4y}{64}=1\)   =>   \(y=16\)

             \(\frac{5z}{75}=1\) =>  \(z=15\)

6 tháng 1 2019

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\Rightarrow\frac{3x}{\frac{2}{3}.3}=\frac{4y}{\frac{3}{4}.4}=\frac{5z}{\frac{4}{5}.5}\)

\(\Leftrightarrow\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{4}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU:

\(\Leftrightarrow\frac{3x}{2}-\frac{4y}{3}+\frac{5z}{5}\Rightarrow\frac{3x-4y+5z}{2-3+5}=\frac{65}{4}\)

\(\Rightarrow\frac{3x}{2}=\frac{65}{4}\Rightarrow3x=\frac{65}{4}.2\Rightarrow3x=\frac{65}{2}\Rightarrow x=\frac{65}{6}\)

\(\Rightarrow\frac{4y}{3}=\frac{65}{4}\Rightarrow4y=\frac{65}{4}.3\Rightarrow4y=\frac{195}{4}\Rightarrow y=\frac{195}{16}\)

\(\Rightarrow\frac{5z}{5}=\frac{65}{4}\Rightarrow5z=\frac{65}{4}.5\Rightarrow5z=\frac{325}{4}\Rightarrow z=\frac{65}{4}\)

# chúc bạn học tốt #

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15

27 tháng 9 2019

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự

8 tháng 11 2018

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)

từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow x=15k,y=20k,z=24k\)

thay x=15k, y=20k, z=24k vào M ta có:

\(M=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)

vậy M=\(\frac{186}{245}\)

30 tháng 1 2017

Ta có:\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\end{cases}}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{4z}{96}=\frac{2x+3y+4z}{30+60+96}=\frac{2x+3y+4z}{186}\)(theo tính chất dãy tỉ số bằng nhau).(1)

\(\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}=\frac{3x+4y+5z}{45+80+120}=\frac{3x+4y+5z}{245}\)(theo tính chất dãy tỉ số bằng nhau). (2)

Từ (1) và (2) \(\Rightarrow\frac{2x+3y+4z}{186}=\frac{3x+4y+5z}{245}\Rightarrow\frac{2x+3y+4z}{3x+4y+5z}=\frac{186}{245}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

Do đó: x=20; y=30; z=42

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

21 tháng 3 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\)

\(\Rightarrow x=15k;y=20k;z=24k\)

\(\frac{2x+3y+4z}{3x+4y+5z}=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)

26 tháng 10 2018

bạn giải đi bạn

27 tháng 10 2018

Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:

\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)

\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)

28 tháng 12 2015

Vì \(\frac{x}{3}=\frac{y}{4}=>x=\frac{3}{4}y\)

\(\frac{y}{5}=\frac{z}{6}=>z=\frac{6}{5}y\)

Ta có

\(M=\frac{2x+3y+4z}{3x+4y+5z}=\frac{2.\frac{3}{4}y+3y+4.\frac{6}{5}y}{3.\frac{3}{4}y+4y+5.\frac{6}{5}y}=\frac{\frac{93}{10}y}{\frac{49}{4}y}=\frac{93}{10}:\frac{49}{4}=\frac{186}{245}\)