K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2^{x-2}.3^{y-3}.5^{z-1}=144=2^4.3^2.5^0\)

\(\Rightarrow\hept{\begin{cases}x-2=4\Rightarrow x=6\\y-3=2\Rightarrow y=5\\z-1=0\Rightarrow z=1\end{cases}}\)

19 tháng 10 2019

\(2^{x-2}.3^{y-3}.5^{z-1}=144\)

mà 144 =  24.32

=> \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.1=2^4.3^2.5^0\)

=> \(\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)

Vậy...

17 tháng 2 2022

\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)

26 tháng 12 2021
Giúp mik vs ạ
25 tháng 10 2016

CTV mới học lớp 7 thui ak                                    

8 tháng 11 2016

Các bạn ơi! Dấu chấm là dấu nhân nha!

8 tháng 11 2016

Ta có: \(144=2^4.3^2.5^0\)

Suy ra: \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)

Suy ra: \(2^{x-2}=2^4;3^{y-3}=3^2;5^{z-1}=5^0\)

Suy ra: \(x-2=4;y-3=2\)\(z-1=0\)

Hay \(x=6;y=5\)\(z=1\)

10 tháng 7 2016

Phân tích 144 thành thừa số nguyên tố, ta được: 

144 = 24.32

Mà theo đề:

2x-2 . 3y-3 . 5z-1 = 144

=> 2x-2 . 3y-3 . 5z-1 = 24 . 32 . 50 (Lưu ý: 50 = 1)

=> x - 2 = 4 và y - 3 = 2 và z - 1 = 0

=> x = 6 và y = 5 và z = 1

Vậy...

Ta thấy \(144=2^4.3^2\)

Ta có : \(2^{x-2}.3^{y-3}.5^{z-1}=144\)

\(=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)

\(=>\left(x-2\right)\left(y-3\right)\left(z-1\right)=4.2.0\)

\(=>x-2=4=>x=6\)

\(=>x-3=2=>x=5\)

\(=>z-1=0=>z=1\)