Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a)
x/3=y/4=>x/15=y/20
y/5=z/7=>y/20=z/28
=>x/15=y/20=z/18
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/15=y/20=z/28=2x+3y-z/30+60-28=372/62=6
=>x=90
y=120
z=168
b)
2x=3y=5z
2x=3y=>x/3=y/2=>x/15=y/10
3y=5z=>y/5=z/3=>y/10=z/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x/15=y/10=z/6=x+y-z/15+10-6=95/19=5
=>x=75
y=50
z=30
a) Ta co :x/3=y/4 suy ra x/15=y/20 (1)
y/5=z/7 suy ra y/20=z/28 (2)
Tu (1) va (2) suy ra y/20=x/15=z/28
còn lại tự làm nhé dễ rùi
b)Ta co : 2x=3y=5z suy ra x phan 1/2=y phan 1/3 = z phan 1/5
de rui tu lam nha
\(\frac{2}{x-1}=\frac{3}{y-2}=\frac{4}{z.3}\)
=> \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{3.z}{4}\)
=> \(\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{3z:3}{4:3}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z}{\frac{4}{3}}=\frac{2x-2+3y-6-z}{4+9-\frac{4}{3}}=\frac{\left(2x+3y-z\right)-8}{\frac{35}{3}}=\frac{95-8}{\frac{35}{3}}=\frac{261}{35}\)
=> \(\hept{\begin{cases}\frac{2x-2}{4}=\frac{261}{35}\\\frac{3y-6}{9}=\frac{261}{35}\\\frac{z}{\frac{4}{3}}=\frac{261}{35}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{557}{35}\\y=\frac{853}{35}\\z=\frac{348}{35}\end{cases}}}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(x-1\right)+3.\left(y-2\right)-\left(z-3\right)}{2.2+3.3-4}\)
\(=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}=\frac{95-5}{9}=10\)
suy ra: \(\frac{x-1}{2}=10\Rightarrow x-1=20\Rightarrow x=21\)
\(\frac{x-2}{3}=10\Rightarrow x-2=30\Rightarrow x=32\)
\(\frac{x-3}{4}=10\Rightarrow x-3=40\Rightarrow x=43\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{95-5}{9}=10\)
+\(\frac{x-1}{2}=10;x-1=21;x=19\)
+\(\frac{y-2}{3}=10;y-2=30;y=32\)
+ \(\frac{z-3}{4}=10;z-3=40;z=43\)
Vậy x = 19 ; y = 32 ; z = 43
x-1/2 = y-2/3 = z-3/4 =2x- 2/4 = 3y - 6/9 = 2x + 3y -z - 5/ 9 = 10
=> x = 21 , y = 32 , z = 43
= > x + y + z = 96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}\frac{3y-6}{9}=\frac{2x+3y-z-5}{9}=10\)
Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Leftrightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
mà 2x+3y-z=95
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-3+3y-6-z+3}{4+9-4}=\dfrac{95-6}{9}=\dfrac{89}{9}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x-2}{4}=\dfrac{89}{9}\\\dfrac{3y-6}{9}=\dfrac{89}{9}\\\dfrac{z-3}{4}=\dfrac{89}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=\dfrac{356}{9}\\3y-6=89\\z-3=\dfrac{356}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{374}{9}\\3y=95\\z=\dfrac{383}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{187}{9}\\y=\dfrac{95}{3}\\z=\dfrac{383}{9}\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{187}{9};\dfrac{95}{3};\dfrac{383}{9}\right)\)