K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

\(\Rightarrow x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)

\(y-\frac{1}{5}=0\Rightarrow y=\frac{1}{5}\)

\(x+y+z=0\Leftrightarrow-\frac{3}{4}+\frac{1}{5}+z=0\Rightarrow-\frac{11}{20}+z=0\Rightarrow z=\frac{11}{20}\)

Vậy x = \(-\frac{3}{4}\) ; y  = \(\frac{1}{5}\) ; z = \(\frac{11}{20}\)

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

14 tháng 7 2015

Vì: \(Ix+\frac{1}{2}I\ge0\)

    \(Iy-\frac{3}{4}I\ge0\)

    \(Iz-1I\ge0\) 

Mà \(Ix+\frac{1}{2}I+Iy-\frac{3}{4}I+Iz-1I=0\)

=>  \(x+\frac{1}{2}=0\) và \(y-\frac{3}{4}=0\) và \(z-1=0\) 

<=> \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)

Vậy  \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)

phần B lm tương tự nha

 

 

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)

a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)

11 tháng 7 2019

a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)

Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x

\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z

\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y

\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z

Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

câu b cách làm giống như câu a

7 tháng 6 2016

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.

18 tháng 7 2019

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{3}{4};y=\frac{2}{5};z=-\frac{23}{20}\)