Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t
Thay vào P được : \(P=1+1+1+1=4\)
Sao thủy
Sao kim
Trái đất
Sao hỏa
Sao mộc
Sao thổ
Sao thiên vương
Sao hải vương
Ta có :
\(x+y=\frac{1}{2}\)
\(y+z=\frac{1}{3}\)
\(z+x=\frac{1}{4}\)
\(\Rightarrow\)\(x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow\)\(2x+2y+2z=\frac{13}{12}\)
\(\Rightarrow\)\(2\left(x+y+z\right)=\frac{13}{12}\)
\(\Rightarrow\)\(x+y+z=\frac{13}{12}:2\)
\(\Rightarrow\)\(x+y+z=\frac{13}{24}\)
Do đó :
\(x+y+z=\frac{13}{24}\)
\(\Rightarrow\)\(x=\frac{13}{24}-\left(y+z\right)=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)
\(\Rightarrow\)\(y=\frac{13}{24}-\left(z+x\right)=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)
\(\Rightarrow\)\(z=\frac{13}{24}-\left(x+y\right)=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)
Vậy \(x=\frac{5}{24};y=\frac{7}{24};z=\frac{1}{24}\)
Chúc bạn học tốt ~