K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Đang rảnh nên lm linh tinh thử  và kết quả là 

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2k\\y-2=3k\\z-3=4k\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}}\)

Thay x = 3k + 1 ; y = 3k + 2 và z = 3k + 3 vào 2x + 3y - z = 50 ta có

2. ( 3k + 1 ) + 3 . ( 3k + 2 ) - ( 4k + 3 ) = 50

<=> 6k + 2 + 9k + 6 - 4k - 3 = 50

<=> ( 6k + 9k - 4k ) + ( 2 + 6 - 3 ) = 50

<=> 11k + 5 = 50

<=> 11k = 45 

<=> \(k=\frac{45}{11}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{45}{11}.2+1\\y=\frac{45}{11}.3+2\\z=\frac{45}{11}.4+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{90}{11}+1=\frac{101}{11}\\y=\frac{135}{11}+2=\frac{157}{11}\\z=\frac{180}{11}+3=\frac{213}{11}\end{cases}}\)

Vậy ....

K thì thôi nhá

@@ Học tốt

13 tháng 3 2016

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

13 tháng 3 2016

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: ..... 

23 tháng 8 2015

\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

 \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=> \(\frac{x}{9}=3\Rightarrow x=27\)

\(\Rightarrow\frac{y}{12}=3\Rightarrow y=36\)

\(\Rightarrow\frac{z}{20}=3\Rightarrow z=60\)

các câu còn lại bạn làm tương tự như thế nhé

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

7 tháng 9 2016

Ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{16}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)

                                                      \(=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)

=> \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\)=> \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

27 tháng 12 2015

b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Theo t/c dảy tỉ số = nhau:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1

=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2

=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3

Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).

a. Áp dụng t/c tỉ số = nhau làm tương tự.

27 tháng 9 2019

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự

5 tháng 7 2017

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\hept{\begin{cases}x-1=2.5=10\\y-2=3.5=15\\z-3=4.5=20\end{cases}}\Rightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

26 tháng 9 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-\left(2+6-3\right)}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

+) \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

+) \(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

+) \(\frac{z-3}{4}=5\Rightarrow z=23\)

Vậy x = 11, y = 17, z = 23

7 tháng 10 2018

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{2x-2}{2}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

Do đó: \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

7 tháng 10 2018

- Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)

\(=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)

\(=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}\)

\(=\frac{50+\left(-5\right)}{9}=\frac{45}{9}=5\)

+) \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

+) \(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

+) \(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

             - Vậy x=11; y= 17; z= 23