Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{2}\left(2x+4y+6z\right)\left(6x+3y+2z\right)\le\dfrac{1}{8}\left(2x+4y+6z+6x+3y+2z\right)^2\)
\(P\le\dfrac{1}{8}\left(8x+7y+8z\right)^2\le\dfrac{1}{8}\left(8x+8y+8z\right)^2=8\)
\(P_{max}=8\) khi \(\left\{{}\begin{matrix}x+y+z=1\\7y=8y\\2x+4y+6z=6x+3y+2z\end{matrix}\right.\) \(\Leftrightarrow\left(x;y;z\right)=\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)
Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).
Áp dụng bđt Cauchy - Schwarz ta có:
\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)
Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)
\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)
Áp dụng nhiều lần bđt trên ta được
\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)
\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)
\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)
\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)
C/m tương tự cho các bđt còn lại
\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)
\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)
Cộng vế theo vế được
\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)
Dấu "=" xảy ra
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)
\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)
\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)
Vậy ..........
cách khác :))
\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)
\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)
\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)
\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
\(2x^2+3y^2-2z^2=0\)
=>\(2x^2+3y^2=2z^2\)
Mà x; y; z dương nên z lớn nhất
Ta có:
\(2x=3y=6z\)
\(\Rightarrow\)\(\frac{2x}{6}=\frac{3y}{6}=\frac{6z}{6}\)
\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{2z}{2}=\frac{x+y-2z}{3+2-2}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=9\\\frac{y}{3}=9\\\frac{2z}{2}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=27\\y=18\\z=9\end{cases}}\)
xin cho tui sửa lại tí @@
Ta có: \(2x=3y=6z\)
\(=>\frac{2x}{6}=\frac{3y}{6}=\frac{6z}{6}\)
\(=>\frac{x}{3}=\frac{y}{2}=\frac{2z}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x+y-2z}{3+2-2}=\frac{27}{3}=9\)
\(=>\hept{\begin{cases}\frac{x}{3}=9=>x=9\cdot3=27\\\frac{y}{2}=9=>y=9\cdot2=18\\\frac{2z}{2}=9=>z=9\cdot2:2=9\end{cases}}\)
Vậy: x = 27
y = 18
z = 9