K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Bài 1:

|x-2|=4-x

ĐK: \(4-x\ge0\Leftrightarrow x\le4\)

Ta có: \(\orbr{\begin{cases}x-2=4-x\\x-2=x-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\0=2\left(loại\right)\end{cases}\Rightarrow}}x=3\left(tm\right)\)

Vậy x = 3 

Bài 2:

a, sao có z

b, Vì \(\hept{\begin{cases}\left|2017-x\right|\ge0\\\left|y-x+2018\right|\ge0\end{cases}\Rightarrow\left|2017-x\right|+\left|y-x+2018\right|\ge0}\)

Mà |2017-x|+|y-x+2018|=0

\(\Rightarrow\hept{\begin{cases}\left|2017-x\right|=0\\\left|y-x+2018\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\y-2017+2018=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2017\\y=1\end{cases}}}\)

Vậy x=2017,y=1

c, giống b

7 tháng 1 2018

Bài 2 cũng có z bạn ạ Làm luôn hộ mình câu b

30 tháng 10 2016

Trước hết ta chứng minh nếu y là số chẵn thì y2 cũng là số chẵn.
Thật vậy, đặt y = 2n thì \(y^2=4n^2\) luôn là một số chẵn.

Với mọi x là số tự nhiên thì 4x luôn là một số chẵn, vậy y2 phải là số chẵn. Áp dụng điều trên ta được y cũng là một số chẵn.

Đặt y = 2k (k thuộc N*) . Khi đó \(4x+y^2=4x+\left(2k\right)^2=4\left(x+k^2\right)\) luôn chia hết cho 4. Trong khi đó vế phải không chia hết cho 4 => Mâu thuẫn.

Vậy không tồn tại giá trị x,y thỏa mãn đề bài.

26 tháng 8 2020

Chủ nhật mih phải gửi bài, làm ơn nhanh lên đi :(

30 tháng 10 2016

Trước hết ta chứng minh nếu y là số chẵn thì y2 cũng là số chẵn.
Thật vậy, đặt y = 2n thì \(y^2=4n^2\) luôn là một số chẵn.

Với mọi x là số tự nhiên thì 4x luôn là một số chẵn, vậy y2 phải là số chẵn. Áp dụng điều trên ta được y cũng là một số chẵn.

Đặt y = 2k (k thuộc N*) . Khi đó \(4x+y^2=4x+\left(2k\right)^2=4\left(x+k^2\right)\) luôn chia hết cho 4. Trong khi đó vế phải không chia hết cho 4 => Mâu thuẫn.

Vậy không tồn tại giá trị x,y thỏa mãn đề bài.

23 tháng 10 2016

IN là jì vậy bn?

12 tháng 7 2018

mọi người giúp e nha 

em k giúp cho  nha mn

thanks

12 tháng 7 2018

nghỉ hè rồi cn ôn lm j nx....