Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(x+1\) | \(-14\) | \(-7\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(7\) | \(14\) |
\(2y+1\) | \(-1\) | \(-2\) | \(-7\) | \(-14\) | \(14\) | \(7\) | \(2\) | \(1\) |
\(x\) | \(-15\) | \(-8\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(6\) | \(13\) |
\(y\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-4\) | \(-\dfrac{15}{2}\) | \(\dfrac{13}{2}\) | \(3\) | \(\dfrac{1}{2}\) | \(0\) |
Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
\(3xy-4x+2y=1\Rightarrow x\left(3y-4\right)=1-2y\Rightarrow x=\dfrac{1-2y}{3y-4}\)
-Vì x,y nguyên nên \(\left(1-2y\right)⋮\left(3y-4\right)\)
\(\Rightarrow\left(3-6y\right)⋮\left(3y-4\right)\)
\(\Rightarrow\left(-6y+8-5\right)⋮\left(3y-4\right)\)
\(\Rightarrow-5⋮\left(3y-4\right)\)
\(\Rightarrow3y-4\inƯ\left\{-5\right\}\)
\(\Rightarrow3y-4\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow y\in\left\{3;1\right\}\)
*\(y=1\Rightarrow x=\dfrac{1-2.1}{3.1-4}=1\)
*\(y=3\Rightarrow x==\dfrac{1-2.3}{3.3-4}=-1\)
- 27/1=81/3 (Ngược lại)
- 3/9=27/81 (Ngược lại)
- 27/9=3/1 (Ngược lại)
- 81/9=27/3 (Ngược lại)
- 1/27=3/81 (Ngược lại)
\(\dfrac{1}{1}\) = \(\dfrac{3}{3}\) = \(\dfrac{9}{9}\) = \(\dfrac{27}{27}\) = \(\dfrac{81}{81}\)
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
\(xy=x-y+3\)
\(\Leftrightarrow xy-x+y=3\)
\(\Leftrightarrow x\left(y-1\right)+\left(y-1\right)=2\)
\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=2\)
\(\Leftrightarrow x+1;y-1\inƯ\left(2\right)\)
Ta có: \(Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
x + 1 | -1 | 1 | -2 | 2 |
x | -2 | 0 | -3 | 1 |
y - 1 | -2 | 2 | -1 | 1 |
y | -1 | 3 | 0 | 2 |
KL | tm | tm | tm | tm |
Vậy các cặp số nguyên (x; y) thỏa mãn là (-2; -1); (0;3); (-3; 0) và (1; 2)
\(n\left(n+1\right)=6\)
Có \(6=1.6=2.3=3.2=6.1\)
Mà n(n+1) là tích của 2 số tự nhiên liên tiếp, n < n+1
\(\Rightarrow\left\{{}\begin{matrix}n=2\\n+1=3\end{matrix}\right.\Rightarrow n=2\)
Vậy n = 2 là giá trị cần tìm.
Từ đề bài suy ra $n;n+1$ là cặp ước của 6
Mà $n;n+1$ là 2 số nguyên liên tiếp
$6=2.3=(-3).(-2)$
$n+1>n$
Nên có 2 trường hợp $n+1=3;n=2$ và $n+1=-2;n=-3$
Vậy $n∈{-3;2}$
\(\frac{12}{16}=-\frac{x}{4}=\frac{21}{y}=\frac{z}{-80}\)
Ta có : \(\frac{12}{16}=-\frac{x}{4}\Rightarrow16.-x=12.4\Rightarrow16.-x=48\)
\(\Rightarrow-x=3\Rightarrow x=-3\)
\(\frac{12}{16}=\frac{21}{y}\Rightarrow12.y=16.21\Rightarrow12.y=336\)
\(\Rightarrow y=28\)
\(\frac{12}{16}=\frac{z}{-80}\Rightarrow16.z=12.-80\Rightarrow16.z=-960\)
\(\Rightarrow z=60\)
Vậy x = - 3 ; y = 28 ; z = 60
Ta có:
\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{-80}\)
\(\Leftrightarrow\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{-z}{80}\) (Chuyển mẫu âm thành dương)
\(\frac{-x}{4}=\frac{12}{16}=\frac{12:\left(-4\right)}{16:\left(-6\right)}=\frac{-3}{-4}=\frac{3}{4}\Rightarrow x=-3\) (Ta chuyển mẫu âm thành dương)
\(\frac{21}{y}=\frac{3}{4}=\frac{3.7}{4.7}=\frac{21}{28}\Rightarrow y=28\)
\(\frac{-z}{80}=\frac{21}{28}\) ( Vì 80 : 28 không hết) \(\Rightarrow z=\varnothing\)
\(\Rightarrow\hept{\begin{cases}-3\\28\\\varnothing\end{cases}}\)