Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => 5x.52 + 5x.53=750
=> 5x . (52+53) =750
=> 5x . 150 =750
=> 5x = 750 : 150
=> 5x = 5
=> x =1
Vậy x = 1
b) => 32x+1 . 7y = 32 . (3.7)x
=> 32x+1 . 7y = 3x+2 . 7x
=> \(\dfrac{3^{2x+1}}{3^{x+2}}\) =\(\dfrac{7^x}{7^y}\)
=> 3(2x+1)-(x+2) = 7x-y
=> 3x-1 = 7x-y
=>\(\left\{{}\begin{matrix}x-1=0\\x-y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\x=y\end{matrix}\right.\)
=>x=y=1
Vậy x=y=1
c)
=>\(\dfrac{3^{3x}}{3^{2x-y}}\) =35 và =>\(\dfrac{5^{2x}}{5^{x+y}}\) =53
=> 3(3x)-(2x-y) =35 =>5(2x)-(x+y) =53
=> 33x-2x+y =35 => 52x-x-y =53
=> 3x+y =35 => 5x-y =53
=> x+y =5 (1) => x-y =3 (2)
Từ (1) và (2) có :
+x = (5+3):2 =4
+y = (5-3):2 =1
Vậy x=4 ; y=1
- Nếu làm đúng cho mình xin cái tick ! Tks
\(5^{x+2}+5^{x+3}=750\)
\(5^x.5^2+5^x.5^3=750\)
\(5^x.25+5^x\cdot125=750\)
\(5^x.\left(25+125\right)=750\)
\(5^x.150=750\)
\(5^x=750:150\)
\(5^x=5\)
\(5^x=5^1\)
\(\Rightarrow x=1\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
a) \(5^{x+2}\)+ \(5^{x+3}\)=625
\(5^x\). \(2^x\)+ \(5^x\) . \(3^x\)=625
\(5^x\). (\(2^x\)+ \(3^x\) ) =625
\(5^x\). \(5^x\) =625
\(25^x\) =625
\(25^x\)= \(25^2\)
vậy x=2
hình như câu a bn ghi nhầm 625 thành 750
Ta có:
\(\frac{27^x}{3^{2x-y}}=243=3^5\Rightarrow27^x=3^5.3^{2x-y}=3^{5+2x-y}\Rightarrow3^{3x}=3^{5+2x-y}\Rightarrow3x=5+2x-y\Rightarrow3x-2x=5-y\Rightarrow x=5-y\)(1)\(\frac{25^x}{5^{x+y}}=125=5^3\Rightarrow25^x=5^3.5^{x+y}\Rightarrow5^{2x}=5^{3+x+y}\Rightarrow2x=3+x+y\Rightarrow2x-x=3+y\Rightarrow x=3+y\)(2)
Từ (1) và (2)⇒
\(x=5-y=3+y\Rightarrow y=1\Rightarrow x=4\)
Vậy y=1; x=4 thỏa mãn đề bài
a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)
+) \(\frac{x}{-2}=-12\Rightarrow x=24\)
+) \(\frac{y}{1}=-12\Rightarrow y=-12\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(24;-12\right)\)
b) Giải:
Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)
Đặt \(\frac{x}{7}=\frac{y}{10}=k\)
\(\Rightarrow x=7k;y=10k\)
Mà \(xy=36\)
\(7k10k=36\)
\(\Rightarrow70k^2=36\)
\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )
c) Giải:
Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)
+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)
+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(\frac{-7}{8};\frac{7}{4}\right)\)