Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(y=\frac{2}{2x+3}\in Z\)
\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{-2;-1\right\}\)
b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)
Vì y thuộc Z nên 2 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{1;2\right\}\)
c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)
Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z
=> 2x + 4 / 2x - 3 thuộc Z
=> 2x - 3 + 7 / 2x - 3 thuộc Z
=> 7 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)
\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )
d,e tương tự
\(\Leftrightarrow xy+3x^2=3\)
\(\Rightarrow xy+3x^3-3=0\)
=>x=0
Thay x=0 vào biểu thức 3x3+xy=3, ta có :
\(\Rightarrow3.0^3+0.y=3\)
=>y \(\in\left\{\infty;-\infty\right\}\)
vậy x,y có thể \(\in\left\{\infty;-\infty;0\right\}\)
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Bài 2:
\(\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{x-2}{x\left(x+2\right)}\)
\(=\dfrac{x+x+2+x-2}{x\left(x+2\right)}=\dfrac{3x}{x\left(x+2\right)}=\dfrac{3}{x+2}\)
Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)