Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> x.(2y+1) = 40
=> x thuộc ước của 40 ( vì x,y thuộc N )
Đến đó bạn liệt kê các ước 40 và giải nha
Ta có \(x+2xy=40\)
\(\Rightarrow x.\left(2y+1\right)=40\)
Suy ra x và 2y+1 thuộc ước của 40
Mà \(Ư\left(40\right)=\left\{1;-1;2;-2;4;-4;5;-58;-8;10;-10;20;-20;40;-40\right\}\)
Mà x,y là số tự nhiên và 2y+1 là số lẻ nên \(2y+1\in\left\{1;5\right\}\)
Ta có bảng sau
2y+1 | 1 | 5 |
y | 0 | 2 |
x | 40 | 8 |
Vậy....
\(xy+2y-x=5\)
\(\Leftrightarrow xy+2y-x-2=5-2\)
\(\Leftrightarrow y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(y-1\right)=3\)
\(\Leftrightarrow x+2;y-1\inƯ\left(3\right)\)
Suy ra :
+) \(\hept{\begin{cases}x+2=1\\y-1=3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=4\end{cases}}\)
+) \(\hept{\begin{cases}x+2=-1\\y-1=-3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=-2\end{cases}}\)
+) \(\hept{\begin{cases}x+2=-3\\y-1=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}\)
+) \(\hept{\begin{cases}x+2=3\\y-1=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy ..
\(5.\left(x-7\right)-4.\left(x+3\right)=-31\)
\(5x-35-\left(4x+12\right)=-31\)
\(5x-35-4x-12=-31\)
\(5x-4x=-31+35+12\)
\(x=16\in Z\)
VẬY \(x=16\)
5.(x-7)-4.(x+3)=-31
=> 5x-35-4x-12= -31
=> 5x-4x = -31 + 35 + 12
=> x = 16
Vậy x=16
\(\left(x-7\right)\left(y+2\right)=7\left(=1.7\right)\)
Do đó:
\(\hept{\begin{cases}x-7=1\\y+2=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}}\)
hoặc\(\hept{\begin{cases}x-7=7\\y+2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=14\\y=-1\end{cases}}\)
hoặc\(\hept{\begin{cases}x-7=-1\\y+2=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=-9\end{cases}}\)
hoặc\(\hept{\begin{cases}x-7=-7\\y+2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Vậy....
mấy bài kia bạn làm tương tự, nếu ben phải âm thì nhân 2 vế cho -1 rồi làm cho thuận tiện
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
Ta có: x+y+xy=2
(xy+x)+(y+1)=3 (cộng 2 vế với 1)
x.(y+1)+(y+1)=3 (Đặt thừa số chung)
(y+1).(x+1)=3=1.3=3.1=(-1).(-3)=(-3).(-1) (Đặt thừa số chung)
Ta có bảng sau:
y+1 | 1 | 3 | -1 | -3 |
x+1 | 3 | 1 | -3 | -1 |
y | 0 | 2 | -2 | -4 |
x | 2 | 0 | -4 | -2 |
Cộng 2 vế với 1 ta có
\(xy+x+y+1=3\)
\(\Leftrightarrow\left(xy+x\right)+\left(y+1\right)=3\)
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=3\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=3=1.3=3.1\)
a)(x+1)(y-2)=3
x+1;y-2 thuộc Ư(3){1;-1;3;-3}
ta có bảng sau :
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
y-2 | 1 | -1 | 3 | -3 |
y | 3 | 1 | 5 | -1 |
vậy cặp x;y thuộc {(2;3);(0;1);(4;5);(-2;-1)}
x+y+xy=40
x.(y+1)+y=40
x.(y+1)+y+1=41
(x+1).(y+1)=41
Vì 41 là số nguyên tố, x,y nguyên
Xảy ra 4 trường hợp:
TH1; x+1=41,y+1=1
=>x=40,y=0(chọn)
TH2: x+1=1,y+1=41
=>x=0,y=40(chọn)
TH3: x+1=-1,y+1=-41
=>x=-2,y=-42(chọn)
TH4:x+1=-41,y+1=-1
=>x=-41,y=-2
x+y+xy=40=>x(1+y)+(y+1)=41=>(y+1)(x+1)=41
do x,y là số nguyên=>y+1 và x+1 cũng là số nguyên =>y+1;x+1 thuộc Ư(41)
sau đó bạn tự chia trường hợp nhé
Có 4 trường hợp
kết quả là (40;0) (0;40)(-42;-2)(-2;-42)
nhớ mình nha