Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-5\right)^{2000}\ge0;\left(3y-4\right)^{2002}\ge0\)
Mà \(\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}\le0\)
suy ra \(\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Leftrightarrow\) (2x - 5)2000 = 0 và (3y - 4)2002 = 0
\(\Leftrightarrow\) 2x - 5 = 0 và 3y - 4 = 0
\(\Leftrightarrow\) 2x = 5 và 3y = 4
\(\Leftrightarrow\) x = \(\frac{5}{2}\) và y = \(\frac{4}{3}\)
Vì lũy thừa bậc chẵn của mọi số đều không âm, nên :
(2x - 5) 2000 lớn hơn hoặc bằng 0 với mọi x (1)
và (3y + 4) 2000 lớn hơn hoặc bằng 0 với mọi y (2)
=> (2x - 5) 2000 + (3y + 4) 2000 lớn hơn hoặc bằng 0 với mọi x,y.
Mà (2x - 5) 2000 + (3y + 4) 2000 bé hơn hoặc bằng 0 (đề cho)
Nên (2x - 5) 2000 + (3y + 4) 2000 = 0 (3)
Từ (1); (2); (3)
=> (2x - 5) 2000 = 0 và (3y + 4)2000 = 0
hay 2x - 5 = 0 và 3y + 4 = 0
2x = 5 và 3y = -4
<=> x = 5 phần 2 và y = -4 phần 3
Vậy x = 5 phần 2 và y = -4 phần 3
Vì: \(\left(2x-5\right)^{2000}=\left(\left(2x-5\right)^{1000}\right)^2\ge0\)
\(\left(3x+4\right)^{2002}=\left(\left(3x+4\right)^{1001}\right)^2\ge0\)
mà \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le 0\)
=>\(\left(2x-5\right)^{2000}=0=>2x-5=0=>2x=5=>x=\frac{5}{2}\)
\(\left(3y+4\right)^{2002}=0=>3y+4=0=>3y=-4=>y=-\frac{4}{3}\)
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)\(\left(1\right)\)
Mà \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}\ge0\\\left(3y+4\right)^{2002}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
Mà \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}\ge0\\\left(3y+4\right)^{2002}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy ..
Ta có : \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}\ge0\\\left(3y+4\right)^{2002}\ge0\end{matrix}\right.\)
Mà \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{2}\) \(;y=-\dfrac{4}{3}\)
Vì (2x - 5)2000 > 0
(3y + 4)2002 > 0
=> (2x - 5)2000 + (3y + 4)2002 > 0
Mà theo đề bài (2x - 5)2000 + (3y + 4)2002 < 0
=> Không tìm được giá trị của x; y thỏa mãn đề bài
Vì \(\left(2x-5\right)^{2016}\ge0\forall x;\left(3y+4\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\ge0\)
Mà đề lại cho \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Nên \(\hept{\begin{cases}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2020}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Vậy ..........
a) Vì (2x - 5)2000 và (3y + 4)2002 đều có số mũ là chẵn => (2x - 5)2000 \(\ge\) 0; (3y + 4)2002 \(\ge\) 0
Mà tổng trên lại \(\le\) 0
=> (2x - 5)2000 = (3y + 4)2002 = 0
=> 2x - 5 = 3y + 4 = 0
=> x = 2,5; y = \(\frac{-4}{3}\)
b) x = 18 - 0,8 : \(\frac{1,5}{\frac{3}{2}.\frac{4}{10}.\frac{50}{2}}\)+ \(\frac{1}{4}\)+ \(\frac{1+0,5.4}{6-\frac{46}{23}}\)
= 18 - \(\frac{8}{10}:\frac{1,5}{15}+\frac{1}{4}+\frac{3}{4}\)
= \(18-8+1=11\)
a) \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=4,5\)
b) \(\left(2x-1\right)^5=243\)
\(\left(2x-1\right)^5=3^5\)
\(2x-1=3\)
\(2x=4\)
\(x=2\)
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
(2x-5)2000 có số mũ là số chẵn => (2x-5)2000\(\ge\)0
(3y+4)2002 có số mũ là số chẵn => (3y+4)2002\(\ge\)0
=> (2x-5)2000+(3y+4)2002\(\ge\)0
Mà (2x-5)2000+(3y+4)2002\(\le\)0
=> (2x-5)2002+(3y+4)2002 = 0
=> 2x-5 = 0 và 3y+4 = 0
=> x = 2,5 và y = \(\frac{-4}{3}\)
(2x-5)2000 + (3y+4)2002 bé hớn hoặc bằng 0
(2x-5)2000 luôn lớn hơn hoặc bằng 0
(3y+4)2002 luôn lớn hơn hoặc bằng 0
=>(2x-5)2000+(3y+4)2002 luôn lớn hơn hoặc bằng 0
=> 2x- 5= 0=> x= 5/2
=>3y+ 4 = 0 => x= 4/3
vậy x=5/2 hoặc x=4/3