Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
\(0\le\left|x\right|\le3\) \(0\le\left|y\right|\le5\) \(x-y=2\)
Vì \(x-y=2\Rightarrow x=y+2\)\(\Rightarrow0\le\left|y+2\right|\le3\Rightarrow0\le\left|y\right|\le1\)
\(\Rightarrow\left|y\right|=\orbr{\begin{cases}1\\0\end{cases}}\)\(\Rightarrow y=\orbr{\begin{cases}\orbr{\begin{cases}1\\-1\end{cases}}\\0\end{cases}\Rightarrow x=\orbr{\begin{cases}\orbr{\begin{cases}4\\2\end{cases}}\\3\end{cases}}}\)\(\Rightarrow y=\left(-1;0;1\right)\Rightarrow x=\left(1;2;3\right)\)
\(\left(x;y\right)=\left(-1;1\right),\left(0;2\right),\left(1;3\right)\)
\(\hept{\begin{cases}!x!\le3\\!y!\le5\\x-y=2\end{cases}}\Rightarrow\hept{\begin{cases}-3\le x\le3\\-5\le y\le5\\y=x+2\end{cases}}\)
với x={-3,-2,-1,0,1,2,3}
=> y={-1,0,1,2,4,5}
a, suy ra x+2 + y +5 = 0
suy ra x+y= -7
xong tự tạo bảng các giá trị nhá
b, có /x/ lớn hơn hoặc bằng 0
1. nếu x = 0 thì /y/+2=0 suy ra y = ko có giá trị
2. nếu x lớn hơn 0 thì suy ra cái vế đầu phải có kết quả âm mà giá trí tuyệt đối ko bao h âm nên không có giá trị x và y
Vậy ko có giá trị của x, y
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
\(1)|5-2x|=|x+4|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=x+4\\5-2x=-x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x-x=4-5\\-2x+x=-4-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}-3x=-1\\-x=-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=9\end{cases}}}\)
Vậy \(x=\frac{1}{3};x=9\)
\(2)|x-1|=|2x+5|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x+5\\x-1=-2x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=5+1\\x+2x=-5+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=4\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=-\frac{4}{3}\end{cases}}}\)
Vậy \(x=-4;x=-\frac{4}{3}\)
\(3)|x+1|+|x+2|+|x+3|=0\left(1\right)\)
Ta có: \(|x+1|\ge0\forall x;|x+2|\ge0\forall x;|x+3|\ge0\forall x\)
\(\Leftrightarrow|x+1|+|x+2|+|x+3|\ge0\forall x\)
\(\left(1\right)\Leftrightarrow|x+1|+|x+2|+|x+3|=0\)
\(\Leftrightarrow\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=0\)
\(\Leftrightarrow x+1+x+2+x+3=0\)
\(\Leftrightarrow\left(x+x+x\right)+\left(1+2+3\right)=0\)
\(\Leftrightarrow3x+6=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-6:3\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
Do \(x,y,z>0\Rightarrow xyz\ne0\)
\(\Rightarrow\dfrac{xy}{xyz}+\dfrac{yz}{xyz}+\dfrac{zx}{xyz}=1\)
\(\Rightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=1\Rightarrow\dfrac{1}{x}< 1\Rightarrow x>1\)
Vì \(x\le y\le z\Rightarrow\dfrac{1}{x}\ge\dfrac{1}{y}\ge\dfrac{1}{z}\)
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}=\dfrac{3}{x}\)
\(\Rightarrow1\le\dfrac{3}{x}\Rightarrow x\le3\) Mà \(x>1\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Nếu \(x=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2}\Rightarrow\dfrac{1}{y}< \dfrac{1}{2}\Rightarrow y>2\\\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{2}{y}\Rightarrow\dfrac{2}{y}\ge\dfrac{1}{2}\Rightarrow y\le4\end{matrix}\right.\)
Mà \(y>2\Rightarrow\left[{}\begin{matrix}y=3\\y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\Rightarrow z=6\\y=4\Rightarrow z=4\end{matrix}\right.\)
Nếu \(x=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{2}{3}\Rightarrow\dfrac{1}{y}< \dfrac{2}{3}\Rightarrow y>\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{2}{y}\Rightarrow\dfrac{2}{y}\ge\dfrac{2}{3}\Rightarrow y\le3\end{matrix}\right.\)
Do \(x\le y\Rightarrow\left\{{}\begin{matrix}y=3\\z=3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(3;3;3\right);\left(2;3;6\right);\left(2;4;4\right)\)