Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11
Bài 3:
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\dfrac{3}{4}x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}3x+2>0\\\dfrac{2}{3}x-5< 0\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< \dfrac{15}{2}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x+2=0\\\dfrac{2}{5}x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{3}{4}=-2\\\dfrac{2}{5}x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=6:\dfrac{2}{5}=15\end{matrix}\right.\)
1, PT\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
2, PT\(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(\left|x-1\right|+\left|x+5\right|=\left|x-1\right|+\left|-x-5\right|\)
\(\Rightarrow\left|x-1\right|+\left|x+5\right|\ge\left|x-1-x-5\right|\)
\(\Rightarrow\left|x-1\right|+\left|x+5\right|\ge\left|-6\right|=6\)
dấu "=" xảy ra khi \(\left(x-1\right).\left(x+5\right)\ge0\)
\(\Rightarrow-5\le x\le1\)
Vậy x={-5,-4,-3,-2,-1,0,1}
b) \(\hept{\begin{cases}\left(2x-y+3\right)^4\ge0\\\left|y+2\right|\ge0\end{cases}}\)
mà \(\left(2x-y+3\right)^4+\left|y+2\right|=0\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2x-y+3\right)^4=0\\\left|y+2\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-2\end{cases}}\)
vậy \(x=-\frac{5}{2},y=-2\)
dấu "=" xảy ra khi
Vậy x={-5,-4,-3,-2,-1,0,1}
b)
mà
dấu "=" xảy ra khi
vậy
\(\left(x-\frac{1}{2}+y\right)^2+\left(x+\frac{5}{6}\right)^2=0\)
mà: \(\left(x-\frac{1}{2}+y\right)^2\ge0;\left(x+\frac{5}{6}\right)^2\ge0\)
=> để: \(\left(x-\frac{1}{2}+y\right)^2+\left(x+\frac{5}{6}\right)^2=0\)
thì: \(\left(x-\frac{1}{2}+y\right)^2=\left(x+\frac{5}{6}\right)^2=0\)
=> x = -5/6; y = 4/3