Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-2=y-4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-y=-4+2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-y=-2\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{-2}{-3}=\frac{2}{3}\)
=> \(\hept{\begin{cases}x=\frac{2}{3}\cdot2=\frac{4}{3}\\y=\frac{2}{3}\cdot5=\frac{10}{3}\end{cases}}\)
Câu hỏi của Nguyễn Thu Trang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo.
Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{4}=\frac{y}{3}.\frac{1}{4}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4}.\frac{1}{3}=\frac{z}{5}.\frac{1}{3}\)
\(\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) và (2) \(\frac{\Rightarrow x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow x=2.8=16\)
\(y=2.12=24\)
\(z=2.15=30\)
Vậy \(x=16;y=24;z=20\)
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
(Không biết là dấu // của bạn là gì có phải | giá trị tuyệt đối?)
1, Không có giá trị lớn nhấn vì số mũ dương. Giá trị nhỏ nhất là 2019. x=1; y=2
2, Không có giá trị lớn nhất), Giá trị nhỏ nhất tại: (vì giá trị tuyệt đối luôn dương)
https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=min(%7Cx%2B3%7C%2B%7Cx-y%2B4%7C-10)
3, C <= 2000 vì (giá trị tuyệt đối luôn dương mà đằng trước dấu giá trị tuyệt đối là - nên luôn âm)
=>
4, vì số mũ dương mà ta lại có 2 ẩn trong đó một ẩn luôn dương và một ẩn luôn âm nên không có giá trị lớn nhất và nhỏ nhất
1, Ta có: (x - 1)2000 \(\ge\)0 \(\forall\)x
|y - 2|2000 \(\ge\)0 \(\forall\)y
=> (x - 1)2000 + |y - 2|2000 + 2019 \(\ge\)2019 \(\forall\)x, y
hay A \(\ge\)2019 \(\forall\)x,y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy Amin = 2019 tại x = 1 và y = 2
2) Ta có: |x + 3| \(\ge\)0 \(\forall\)x
|x - y + 4| \(\ge\) 0 \(\forall\)x, y
=> |x + 3| + |x - y + 4| - 10 \(\ge\)-10 \(\forall\)x,y
hay B \(\ge\)-10 \(\forall\)x,y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+3=0\\x-y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\x-y=-4\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
vậy Bmin = -10 tại x = -3 và y = 1
\(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{5}\) = k
⇒ \(x-1\) = 2k ⇒ \(x=2k+1\)
y - 2 = 5k ⇒ y = 5k + 2
⇒ 2k + 1 - (5k + 2) = 26
⇒ 2k + 1 - 5k - 2 = 26
2k - 5k = 26 + 2 - 1
3k = 28 - 1
-3k = 27
k = 27: - 3
k = - 9
⇒ \(x=\) - 9.2 + 1 = -18 + 1 = -17
y = 5k + 2 = 5.(-9) + 2 = -45 + 2 = -43
Vậy (\(x;y\)) = (- 17; - 43)