K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x+7⋮x+2\)

=>\(x+2+5⋮x+2\)

=>\(5⋮x+2\)

=>\(x+2\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{-1;-3;3;-7\right\}\)

b: \(2x+5⋮x+1\)

=>\(2x+2+3⋮x+1\)

=>\(3⋮x+1\)

=>\(x+1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{0;-2;2;-4\right\}\)

c: \(3x-2⋮x+3\)

=>\(3x+9-11⋮x+3\)

=>\(-11⋮x+3\)

=>\(x+3\in\left\{1;-1;11;-11\right\}\)

=>\(x\in\left\{-2;-4;8;-14\right\}\)

d: \(12x+1⋮3x+2\)

=>\(12x+8-7⋮3x+2\)

=>\(-7⋮3x+2\)

=>\(3x+2\in\left\{1;-1;7;-7\right\}\)

=>\(3x\in\left\{-1;-3;5;-9\right\}\)

=>\(x\in\left\{-\dfrac{1}{3};-1;\dfrac{5}{3};-3\right\}\)

e: \(x^2+3x+5⋮x+3\)

=>\(x\left(x+3\right)+5⋮x+3\)

=>\(5⋮x+3\)

=>\(x+3\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{-2;-4;2;-8\right\}\)

f: \(x^2-2x+3⋮x+2\)

=>\(x^2+2x-4x-8+11⋮x+2\)

=>\(11⋮x+2\)

=>\(x+2\in\left\{1;-1;11;-11\right\}\)

=>\(x\in\left\{-1;-3;9;-13\right\}\)

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

b: =>3x+9=0 và y^2-9=0 và x+y=0

=>x=-3; y=3

a: (2x-5)(y+3)=-22

mà x,y là số nguyên

nên \(\left(2x-5;y+3\right)\in\left\{\left(1;-22\right);\left(11;-2\right);\left(-1;22\right);\left(-11;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;-25\right);\left(8;-5\right);\left(2;19\right);\left(-3;-1\right)\right\}\)

9 tháng 7 2023

a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)

\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)

\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)

\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)

\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)

Vậy: \(1+2^2+2^3+...+2^{10}=2045\)

b) 

a] \(60-3\left(x-1\right)=2^3\cdot3\)

\(\Rightarrow60-3\left(x-1\right)=24\)

\(\Rightarrow3\left(x-1\right)=36\)

\(\Rightarrow x-1=12\)

\(\Rightarrow x=13\)

b] \(\left(3x-2\right)^3=2\cdot2^5\)

\(\Rightarrow\left(3x-2\right)^3=2^6\)

\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)

\(\Rightarrow3x-2=2^2\)

\(\Rightarrow3x=6\)

\(x=2\)

c] \(5^{x+1}-5^x=500\)

\(\Rightarrow5^x\left(5-1\right)=500\)

\(\Rightarrow5^x\cdot4=500\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

d] \(x^2=x^4\)

\(\Rightarrow x=x^2\)

\(\Rightarrow x-x^2=0\)

\(\Rightarrow x\left(1-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

9 tháng 7 2023

giúp mình đi các bạn

 

a: Ta có: \(7x+25=144\)

\(\Leftrightarrow7x=119\)

hay x=17

b: Ta có: \(33-12x=9\)

\(\Leftrightarrow12x=24\)

hay x=2

c: Ta có: \(128-3\left(x+4\right)=23\)

\(\Leftrightarrow3\left(x+4\right)=105\)

\(\Leftrightarrow x+4=35\)

hay x=31

d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)

\(\Leftrightarrow5\left(726-3x\right)=2175\)

\(\Leftrightarrow726-3x=435\)

\(\Leftrightarrow3x=291\)

hay x=97

e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)

\(\Leftrightarrow41-\left(2x+5\right)=18\)

\(\Leftrightarrow2x+5=23\)

\(\Leftrightarrow2x=18\)

hay x=9

13 tháng 8 2021

Bn cần bài nào vậy

19 tháng 11 2021

cần kết quả đúng ko 

26 tháng 2 2021

X2=3                              x2=25     

=> X=\(\pm\sqrt{3}\)             => x=5

X2=36                           

=> x=6

2.(x-1)2+50= 9

2.(x-1)2+1= 9

2.(x-1)2= 8

(x-1)2 = 8/2

(x-1)= 4 

(x-1)2 = (2)2

x-1=(\(\pm\)2)

TH1: x-1= 2              TH2: x-1=-2

        x=2+1                       x =(-2)+1

        x= 3                          x = -1

Vậy x\(\in\)\(\left\{3;1\right\}\)

`@` ` \text {Ans}`

`\downarrow`

`a,`

`1/4+3/4*x=3/2-x`

`=> 1/4 + 3/4x - 3/2 + x = 0`

`=> (1/4 - 3/2) + (3/4x + x) = 0`

`=> -5/4 + 7/4x = 0`

`=> 7/4x = 5/4`

`=> x = 5/4 \div 7/4`

`=> x = 5/7`

Vậy, `x=5/7`

`b,`

`3/5*x-1/4=1/10*x-1/2`

`=> 3/5x - 1/4 - 1/10x + 1/2 = 0`

`=> (3/5x - 1/10x) + (-1/4 + 1/2)=0`

`=> 1/2x + 1/4 = 0`

`=> 1/2x = -1/4`

`=> x = -1/4 \div 1/2`

`=> x = -1/2`

Vậy, `x=-1/2`

`c,`

`3x-3/5=x-1/4`

`=> 3x - 3/5 - x + 1/4 = 0`

`=> (3x - x) - (3/5 - 1/4) = 0`

`=> 2x - 7/20 = 0`

`=> 2x = 0,35`

`=> x = 0,35 \div 2`

`=> x = 7/40`

Vậy, `x=7/40`

`d,`

`3/2*x-2/5=1/3*x-1/4`

`=>  3/2x - 2/5 - 1/3x + 1/4 = 0`

`=> (3/2x - 1/3x) - (2/5 - 1/4) = 0`

`=> 7/6x - 3/20 = 0`

`=> 7/6x = 3/20`

`=> x = 3/20 \div 7/6`

`=> x = 9/70`

Vậy, `x=9/70`

`@` `\text {Kaizuu lv uuu}`