Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)
=>\(x_1=-16\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)
\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)
Do đó: \(x_2=3;y_2=-2\)
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Mà đề bài cho:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=2\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\\x+y-3=2z\left(3\right)\\x+y+z=\dfrac{1}{2}\left(4\right)\end{matrix}\right.\)
Ta có:
\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được:
\(\dfrac{1}{2}-x+1=2x\Rightarrow\dfrac{3}{2}=3x\Rightarrow x=\dfrac{1}{2}\)
\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được:
\(\dfrac{1}{2}-y+2=2y\Rightarrow\dfrac{5}{2}=3y\Rightarrow y=\dfrac{5}{6}\)
\((*)\) \(x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{4}{3}+z=\dfrac{1}{2}\Leftrightarrow z=\dfrac{-5}{6}\)
Vậy: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)
1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)
Ta có: \(x^2+y^2\ge0,\forall x;y\)
=> \(x^2+y^2+5\ge5\) với mọi x; y
=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)
=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)
Dấu "=" xảy ra <=> x = y = 0
Vậy max M = 7/5 đạt tại x = y = 0
2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)
\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)
\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)
=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)
f(1)=6 ,f(2)=3,f(3)=2
b,y=3=>2
=>y=-2=>x=-3
c điểm ko thuộc đồ thị h/s là điểm
A(-1,-6)=6/-1=-6=>A THUOC H/S TREN
CÂU TIẾP THEO TƯƠNG TỰ