Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng theo từng vế các đẳng thức đã cho, ta được:
x.(x + y + z) + y(x + y + z) + z.(x+ y + z) = - 5 + 9 + 5
⇔ (x + y + z). (x + y + z ) = 9
Suy ra: (x + y + z)2 = 9 ⇒ x + y + z = ±3
với x,y,z thuộc số hữu tì ta có
bn tự chép đề tại chỗ này nh a.
từ đề bài ,cộng vế theo vế ta có
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
suy ra (x+y+z)(x+y+z)=9 suy ra (x+y+z)^2=3^2 hay =(-3)^2
suy ra x+y+z=3 hay=-3
xét trường hợp 1 ta có x+y+z=3
suy ra x(x+y+z)=-5 suy ra x=-5/3
suy ra y=9/3=3
suy ra z=5/3
tương tự xét trường hợp thứ hai ta có x+y+z=-3
suy ra x=-5/-5=5/3
suy ra y=9/-3=-3
suy ra z=5/-3=-5/3
Theo tính chất dãy tỉ số bằng nhau.
Ta có x/2=y/3=z/5 và x+y+z=810
x/2=y/3=z/5=x+y+z=810/2*3*5=810/30=27
Do đó x/2=27 => x=27*2=54
y/3=27 => y=27*3=81
z/5=27 => z=27*5=135
\(\left(x-5\right)^8+|y^2-4|=0\)
Vì \(\left(x-5\right)^8\ge0\)\(\forall x\)
\(|y^2-4|\ge0\)\(\forall y\)
\(\Rightarrow\left(x-5\right)^8+|y^2-4|\ge0\)\(\forall x,y\)
mà \(\left(x-5\right)^8+|y^2-4|=0\left(gt\right)\)
\(\Rightarrow\left(x-5\right)^8+|y^2-4|=0\Leftrightarrow\left(x-5\right)^8=0\)và \(|y^2-4|=0\)
\(\Leftrightarrow x-5=0\)và \(y^2-4=0\)
\(\Leftrightarrow x=5\)và \(y^2=4\)
\(\Leftrightarrow x=5\)và \(y=-2\)hoặc \(y=2\)
Vậy x = 5 , y = -2 hoặc y = 2
Suy ra y.(x - 2) = 4. Vì x, y ∈ Z nên x - 2 ∈ Z, ta có bảng sau:
Ta có: y và (x – 2) là ước của 4 và y.(x - 2) = 4.
y | 1 | -1 | 2 | -2 | 4 | -4 |
x - 2 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 6 | -2 | 4 | 0 | 3 | 1 |
x và y là hai đại lượng tỉ lệ thuận nên:
\(\Rightarrow y=kx\) (với k là hệ số tỉ lệ)
Ta có: \(x=15;y=20\)
\(\Rightarrow k=\dfrac{y}{x}=\dfrac{20}{15}=\dfrac{4}{3}\)
Vậy x và y là hai đại lượng tỉ lệ thuận, với x = 15 và y = 20 thì hệ số tỉ lệ (k) của y đối với x là \(\dfrac{4}{3}\)
Ta có \(\left|x-2011\right|+\left|x-2015\right|=\left|-x+2011\right|+\left|x-2015\right|\ge4\),\(\hept{\begin{cases}\left|x-2013\right|\ge0\\\left|y-2017\right|\ge0\end{cases}}\)
\(\Rightarrow VT\ge4\). Dấu = xảy ra khi \(\hept{\begin{cases}\left(-x+2011\right).\left(x-2015\right)\ge0\\x-2013=0\\y-2017=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\y=2017\end{cases}}}\)
Vậy ...