Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{5}=\frac{y+5}{7}=\frac{x-2+y+5}{5+7}=\frac{x+y+3}{12}=\frac{21+3}{12}=2\)
\(\Rightarrow\frac{x-2}{5}=2\Rightarrow x=12\)
\(\frac{y+5}{7}=2\Rightarrow y=9\)
Vậy x=12;y=9
\(\frac{x-2}{5}=\frac{y+5}{7}\) VÀ \(x+y=21\)
Giải
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x-2}{5}=\frac{y+5}{7}=\frac{\left(x-2\right)+\left(y+5\right)}{5+7}\)
\(=\frac{x-2+y+5}{12}\)
\(=\frac{\left(x+y\right)+\left(-2+5\right)}{12}\)
\(=\frac{21+3}{12}\)
\(=\frac{24}{12}=2\)
Từ +)\(\frac{x-2}{5}=2\Rightarrow x-2=2.5=10\)
\(x=10+2=12\)
+) \(\frac{y+5}{7}=2\Rightarrow y+5=2.7=14\)
\(y=14-5=9\)
Vậy x = 12 ; y = 9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}\) + \(\frac{y}{5}\) = \(\frac{x+y}{2+5}\) = \(\frac{21}{7}\) = 3
Ta có:
\(\frac{x}{2}\) = 3 => x = 3 . 2 = 6
\(\frac{y}{5}\) = 3 => y = 3 . 5 = 15
Vậy x = 6 , y = 15
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
- \(\frac{x}{2}=3\Rightarrow x=2.3=6\)
- \(\frac{y}{5}=3\Rightarrow y=3.5=15\)
Vậy: \(x=6,y=15\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
ÁP dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{7}=\frac{-21}{7}=-3\)
\(\Leftrightarrow\frac{x}{2}=-3\Leftrightarrow x=-6\)
\(\Leftrightarrow\frac{y}{5}=-3\Leftrightarrow y=-15\)
câu b tương tự
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x-y+z}{10-15+12}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) mà x - y + z = -21
\(\Rightarrow\frac{-21}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow-3=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\hept{\begin{cases}x=-3\cdot10=-30\\y=-3\cdot15=-45\\z=-3\cdot12=-36\end{cases}}\)
a,Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{21}{3}=7\)\(\Rightarrow\hept{\begin{cases}x=7.5=35\\y=2.7=14\end{cases}}\)
c,Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y}{4+3}=\frac{14}{7}=2\)\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.2=4\end{cases}}\)
(x-2)/5=(y+5)/7=(x-2+y+5)/12=(x+y-2+5)/12
=(21-2+5)/12=2
=>(x-2)/5=2=>x=12
=>(y+5)/7=2=>y=9