K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

(x-2)/5=(y+5)/7=(x-2+y+5)/12=(x+y-2+5)/12

=(21-2+5)/12=2

=>(x-2)/5=2=>x=12

=>(y+5)/7=2=>y=9

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

30 tháng 3 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-2}{5}=\frac{y+5}{7}=\frac{x-2+y+5}{5+7}=\frac{x+y+3}{12}=\frac{21+3}{12}=2\)

\(\Rightarrow\frac{x-2}{5}=2\Rightarrow x=12\)

\(\frac{y+5}{7}=2\Rightarrow y=9\)

Vậy x=12;y=9

\(\frac{x-2}{5}=\frac{y+5}{7}\) VÀ \(x+y=21\)

                              Giải

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

   \(\frac{x-2}{5}=\frac{y+5}{7}=\frac{\left(x-2\right)+\left(y+5\right)}{5+7}\)

                                     \(=\frac{x-2+y+5}{12}\)

                                     \(=\frac{\left(x+y\right)+\left(-2+5\right)}{12}\)

                                     \(=\frac{21+3}{12}\)

                                     \(=\frac{24}{12}=2\)

Từ +)\(\frac{x-2}{5}=2\Rightarrow x-2=2.5=10\)

                                    \(x=10+2=12\)

     +) \(\frac{y+5}{7}=2\Rightarrow y+5=2.7=14\)

                                    \(y=14-5=9\)

Vậy x = 12 ; y = 9

17 tháng 12 2017

theo TCDTSBN ta có :

\(\frac{x}{5}=\frac{y}{7}=\frac{3x}{3.5}=\frac{2y}{2.7}=\frac{3x-2y}{15-14}=\frac{-21}{1}=-21\)

\(\frac{x}{5}=-21\Rightarrow x=-21.5=-105\)

\(\frac{y}{7}=-21\Rightarrow y=-21.7=-147\)

Vậy ...

3 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}\) + \(\frac{y}{5}\) = \(\frac{x+y}{2+5}\) = \(\frac{21}{7}\) = 3

Ta có:

\(\frac{x}{2}\) = 3 => x = 3 . 2 = 6

\(\frac{y}{5}\) = 3 => y = 3 . 5 = 15

Vậy x = 6 , y = 15

3 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

  • \(\frac{x}{2}=3\Rightarrow x=2.3=6\)
  • \(\frac{y}{5}=3\Rightarrow y=3.5=15\)

Vậy: \(x=6,y=15\)

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

18 tháng 7 2017

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)

Thế y=\(\frac{-2x}{5}\) ta được:

x+\(\frac{-2x}{5}\)=30     \(\Rightarrow\frac{5x-2x}{5}=30\)

\(\Rightarrow3x=150\)\(\Rightarrow x=50\)

=>y=30-x=30-50=-20.

Vậy x=50; y=-20.

Những bài khác tương tự bạn nhé!

5 tháng 11 2017

bạn kia làm đúng rồi

k tui nha 

thank

11 tháng 12 2017

ÁP dụng tính  chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{7}=\frac{-21}{7}=-3\)

\(\Leftrightarrow\frac{x}{2}=-3\Leftrightarrow x=-6\)

\(\Leftrightarrow\frac{y}{5}=-3\Leftrightarrow y=-15\)

câu b tương tự

20 tháng 7 2018

\(\frac{x}{2}=\frac{y}{5}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

\(\Rightarrow\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)

vậy___

12 tháng 7 2019

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x-y+z}{10-15+12}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) mà x - y + z = -21

\(\Rightarrow\frac{-21}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow-3=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\hept{\begin{cases}x=-3\cdot10=-30\\y=-3\cdot15=-45\\z=-3\cdot12=-36\end{cases}}\)

14 tháng 12 2017

a,Áp dụng dãy tỉ số bằng nhau: 

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{21}{3}=7\)\(\Rightarrow\hept{\begin{cases}x=7.5=35\\y=2.7=14\end{cases}}\)

c,Áp dụng dãy tỉ số bằng nhau:

  \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y}{4+3}=\frac{14}{7}=2\)\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.2=4\end{cases}}\)