K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

a) x2−2x−4y2−4y=(x2−4y2)−(2x+4y)=(x−2y).(x+2y)−2.(x+2y)

=(x+2y).(x−2y−2)

b)  x4+2x3−4x−4=(x4−4)+(2x3−4x)=(x2+2).(x2−2)+2x.(x2−2)

=(x2−2).(x2+2+2x)

a: \(\Leftrightarrow x^2-2x+1+y^2+4y+4=0\)

=>(x-1)^2+(y+2)^2=0

=>x=1 và y=-2

b: \(\Leftrightarrow2x^2+2y^2-16x+32+16y+32=0\)

\(\Leftrightarrow2\left(y-4\right)^2+2\left(x+4\right)^2=0\)

=>y=4; x=-4

4 tháng 9 2020

a/ \(=\left(9x^2+30x+25\right)+\left(x^2+10x+25\right)=\)

\(=\left(3x+5\right)^2+\left(x+5\right)^2\)

b/ \(=\left(16x^2+8x+1\right)+\left(y^2-4y+4\right)=\left(4x+1\right)^2+\left(y-2\right)^2\)

c/ 

1: =(16x^2-8x+1)-y^2

=(4x-1)^2-y^2

=(4x-1-y)(4x-1+y)

2: =(x^2-2xy+y^2)-z^2

=(x-y)^2-z^2

=(x-y-z)(x-y+z)

3: =(x^2+4xy+4y^2)-16

=(x+2y)^2-4^2

=(x+2y-4)(x+2y+4)

4: =(x^2-4xy+4y^2)-16

=(x-2y)^2-4^2

=(x-2y-4)(x-2y+4)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:
a.

$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$

$=9x=9.15=135$

b.

$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$

$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$

c.

$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$

$=-8x^3+9x^2y^2-xy^3$

$=(-2x)^3+(3xy)^2-xy^3$

$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$

16 tháng 8 2017

a, \(2x^2-4xy+4y^2-6x\)

\(=x^2-2xy-2xy+4y^2+x^2-3x-3x+9-9\)

\(=\left(x-2y\right)^2+\left(x-3\right)^2-9\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-2y\right)^2+\left(x-3\right)^2-9\ge-9\)

Để \(\left(x-2y\right)^2+\left(x-3\right)^2-9=-9\) thì

\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3-2y=0\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1,5\\x=3\end{matrix}\right.\)

Vậy..............

b, \(z^2-4zt+5t^2-2t+13\)

\(=z^2-2zt-2zt+4t^2+t^2-t-t+1+12\)

\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)

Với mọi giá trị của \(z;t\in R\) ta có:

\(\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)

Để \(\left(z-2t\right)^2+\left(t-1\right)^2+12=12\) thì

\(\left\{{}\begin{matrix}\left(z-2t\right)^2=0\\\left(t-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)

Vậy...............

Câu c tường tự !!!

16 tháng 8 2017

a,Đặt A= \(2x^2-4xy+4y^2-6x\)

\(=\left(2x^2-4xy-6x\right)+4y^2\)

\(=2\left(x^2-2xy-3x\right)+4y^2\)

\(=2\left[x^2-2x\left(y+\dfrac{3}{2}\right)+\left(y+\dfrac{3}{2}\right)^2\right]+4y^2-\left(y+\dfrac{3}{2}\right)^2\)

\(=2\left(x-y-\dfrac{3}{2}\right)^2+4y^2-y^2-3y-\dfrac{9}{4}\)

\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y^2-y+\dfrac{1}{4}\right)-3\)

\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2-3\)

Với mọi giá trị của x;y ta có:

\(\left(x-y-\dfrac{3}{2}\right)^2\ge0;\left(y-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x-y-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2-3\ge-3\)

Vậy Min A = -3 khi \(\left\{{}\begin{matrix}x-y-\dfrac{3}{2}=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}-\dfrac{3}{2}=0\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

b, Đặt B = \(z^2-4zt+5t^2-2t+13\)

\(=\left(z^2-4zt+4t^2\right)+\left(t^2-2t+1\right)+12\)

\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)

Với mọi giá trị của z;t ta có:

\(\left(z-2t\right)^2\ge0;\left(t-1\right)^2\ge0\)

\(\Rightarrow\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)

Vậy Min B = 12 khi \(\left\{{}\begin{matrix}z-2t=0\\t-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)

c, Đặt C = \(16x^2-8x+y^2-2y\)

\(=\left(16x^2-8x+1\right)+\left(y^2-2y+1\right)-2\)

\(=\left(4x-1\right)^2+\left(y-1\right)^2-2\)

Với mọi giá trị x;y ta có:

\(\left(4x-1\right)^2\ge0;\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(4x-1\right)^2+\left(y-1\right)^2-2\ge-2\)

Vậy Min C = -2 khi \(\left\{{}\begin{matrix}4x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=1\end{matrix}\right.\)

a: \(16x^3+0,25yz^3\)

\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)

\(=0,25\left(64x^3+yz^3\right)\)

b: \(x^4-4x^3+4x^2\)

\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)

\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

c: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)^2\)

d: \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

e: \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

f: \(2x^2-18\)

\(=2\cdot x^2-2\cdot9\)

\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)

g: \(x^2+8x+7\)

\(=x^2+x+7x+7\)

\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h: \(x^4y^4+4\)

\(=x^4y^4+4x^2y^2+4-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

i: \(x^4+4y^4\)

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

k: \(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)

13 tháng 7 2019

\(1.\)

\(a;A=-2x^2+4x-18\)

\(A=-2\left(x^2-4x+18\right)\)

\(A=-2\left(x^2-2.x.2+4+14\right)\)

\(A=-2\left(x-2\right)^2-14\le-14\)

Dấu = xảy ra khi : \(x-2=0\)

                              \(\Rightarrow x=2\)

Vậy Amax =-14 tại x = 2

Các câu còn lại lm tương tự........