Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)
\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{8}{17}:\dfrac{1}{2}=\dfrac{16}{17}\)
\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{16}{17}=\dfrac{1}{17}\)
\(\Rightarrow x+2=17\rightarrow x=15\)
Vậy x = 15
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
a, \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)
\(\Leftrightarrow98\left(2x+1\right)=99.2x\)
\(\Leftrightarrow2x=98\Rightarrow x=49\)
b: Đặt \(A=1-3+3^2-3^3+...+\left(-3\right)^x\)
\(=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^x\)
\(\Leftrightarrow-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}\)
\(\Leftrightarrow-3A-A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}-...-1\)
\(\Leftrightarrow-4A=\left(-3\right)^{x+1}-1\)
\(\Leftrightarrow A=\dfrac{\left(-3\right)^{x+1}-1}{-4}=\dfrac{-\left(-3\right)^{x+1}+1}{4}\)
\(\Leftrightarrow\dfrac{-\left(-3\right)^{x+1}+1}{4}=\dfrac{3^{2012}-1}{2}\)
\(\Leftrightarrow-\left(-3\right)^{x+1}+1=2\cdot3^{2012}-2\)
\(\Leftrightarrow-\left(-3\right)^{x+1}=2\cdot3^{2012}-3\)
\(\Leftrightarrow-\left(-3\right)^{x+1}=3\left(2\cdot3^{2011}-1\right)\)
\(\Leftrightarrow-\left(-3\right)^x=2\cdot3^{2011}-1\)
=>x=2010
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
\(B=-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{-1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{100}{101}=-\dfrac{50}{101}\)
Với mọi x ta có :
+) \(\left|x+\dfrac{1}{1.3}\right|\ge0; \)
+) \(\left|x+\dfrac{1}{3.5}\right|\ge0;\)
.....................................
+) \(\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+.......+\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Leftrightarrow50x\ge0\)
\(\Leftrightarrow x\ge0\)
Khi \(x\ge0\) ta được :
+) \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3}\)
+) \(\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5}\)
.............................................
+) \(\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\)
\(\Leftrightarrow\left(x+\dfrac{1}{1.3}\right)+\left(x+\dfrac{1}{3.5}\right)+......+\left(x+\dfrac{1}{97.99}\right)=50x\)
\(\Leftrightarrow49x+\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{97.99}\right)=50x\)
\(\Leftrightarrow x=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Leftrightarrow x=\dfrac{16}{99}\)
Vậy...
\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{99.101}\right|=100x\)
\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{1.3}\right|\ge0\\\left|x+\dfrac{1}{3.5}\right|\ge0\\\left|x+\dfrac{1}{99.101}\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+ \left|x+\dfrac{1}{99.101}\right|\ge0\)\(\Rightarrow100x\ge0\)
\(\Rightarrow x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+x+\dfrac{1}{5.7}+...+x+\dfrac{1}{99.101}=100x\)\(\Rightarrow50x+\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}=100x\)
\(\Rightarrow50x+\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=100x\)
\(\Rightarrow50x+\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=100x\)
\(\Rightarrow50x+\dfrac{50}{101}=500x\)
\(\Rightarrow50x=\dfrac{50}{101}\)
\(\Rightarrow x=\dfrac{1}{101}\)
lập lueenaj chút đê nhok