K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

4 tháng 10 2020

a) (x + 3)3 - x(3x + 1)2  + (2x + 1)(4x2 - 2x + 1) = 28

=> x3 + 9x2 + 27x + 27 - x(9x2 + 6x + 1) +(2x + 1)[(2x)2 - 2.x.1 + 12 ] = 28

=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + (2x)3 + 13 = 28

=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28

=> (x3 - 9x3  + 8x3) + (9x2 - 6x2) + (27x - x) + (27 + 1) = 28

=> 3x2 + 26x + 28 = 28

=> 3x2 + 26x = 0

=> 3x2 + 26x = 0

=> \(3x\left(x+\frac{26}{3}\right)=0\)

=> 3x = 0 hoặc x + 26/3 = 0

=> x = 0 hoặc x = -26/3

b) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)

=> \(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)

=> \(x^6-3x^4+3x^2-1-x^6+1=0\)

=> \(\left(x^6-x^6\right)-3x^4+3x^2+\left(-1+1\right)=0\)

=> \(-3x^4+3x^2=0\)

=> \(-\left(3x^4-3x^2\right)=0\)

=> \(3x\left(x^3-x\right)=0\)

=> \(\orbr{\begin{cases}3x=0\\x^3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x\left(x^2-1\right)=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

a: \(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)

\(\Leftrightarrow9x^3+9x^2+27x+28-28-9x^3-6x^2-x=0\)

\(\Leftrightarrow3x^2+26x=0\)

=>x=0 hoặc x=-26/3

b: \(\Leftrightarrow x^6-3x^4+3x^2-1-x^6+1=0\)

\(\Leftrightarrow-3x^4+3x^2=0\)

\(\Leftrightarrow-3x^2\left(x^2-1\right)=0\)

hay \(x\in\left\{0;1;-1\right\}\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

=>\(3x^2+26x=0\)

=>x(3x+26)=0

=>x=0 hoặc x=-26/3