K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

\(\left(x-1,5\right)^6+2.\left(1,5-x\right)^2=0\\ \Leftrightarrow\left(x-1,5\right)^6+2.\left(x-1,5\right)^2=0\\ \Leftrightarrow\left(x-1,5\right)^2.\left[\left(x-1,5\right)^4+2\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1,5\right)^2=0\\\left(x-1,5\right)^4+2\ge0\forall x\in R\end{matrix}\right.\\ \Leftrightarrow x=1,5\)

Vậy x=1,5

Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)

\(\Leftrightarrow x-1.5=0\)

hay x=1,5

a) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)

\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)

\(\Leftrightarrow x-1.5=0\)

hay x=1,5

b) Ta có: \(2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

a: Ta có: \(2-x=2\left(x-2\right)^3\)

\(\Leftrightarrow2\left(x-2\right)^3+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2+1\right]=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

c: Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^3=0\)

\(\Leftrightarrow\left(x-1.5\right)^6-2\left(x-1.5\right)^3=0\)

\(\Leftrightarrow\left(x-1.5\right)^3\cdot\left[\left(x-1.5\right)^3-2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1.5\\x=\sqrt[3]{2}+1.5\end{matrix}\right.\)

22 tháng 12 2021

a: =x(x-5)

22 tháng 12 2021

a) \(=x\left(x-5\right)\)

b) \(=\left(x+3y-3y\right)\left(x+3y+3y\right)=x\left(x+6y\right)\)

c) \(=x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)\left(x-3\right)\)

5 tháng 1 2022

\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)

5 tháng 1 2022

\(=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)

11 tháng 8 2021

Bn ơi bn có thể giải thích câu đầu tiên đoạn sau giấu <=> đc ko?

 

Câu 1:

a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)

\(=x^3+2^3+x\left(1-x^2\right)\)

\(=x^3+8+x-x^3\)

=x+8

b: Khi x=-4 thì A=-4+8=4

c: Đặt A=-2

=>x+8=-2

=>x=-10

Câu 2:

a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)

b: \(5x^3+10x^2+5x\)

\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)

\(=5x\left(x^2+2x+1\right)\)

\(=5x\left(x+1\right)^2\)

 

20 tháng 8 2021

\(\left(x^2+2x\right)^2-2x^2-4x-3=0\Leftrightarrow x^4+4x^3+4x^2-2x^2-4x-3=0\Leftrightarrow x^4+4x^3+2x^2-4x-3=0\Leftrightarrow\left(x-1\right)\left(x+1\right)^2\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Ta có: \(\left(x^2+2x\right)^2-2x^2-4x-3=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=1\end{matrix}\right.\)

24 tháng 8 2020

Đặt \(a=x^2+x+1\)\(\Rightarrow\)\(a+1=x^2+x+2\)

Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-6=a.\left(a+1\right)-6\)

                                                                             \(=a^2+a-6\)

                                                                             \(=\left(a^2-2a\right)+\left(3a-6\right)\)

                                                                             \(=a.\left(a-2\right)+3\left(a-2\right)\)

                                                                             \(=\left(a+3\right).\left(a-2\right)\)

                                                                             \(=\left(x^2+x+1+3\right).\left(x^2+x+1-2\right)\)

                                                                             \(=\left(x^2+x+4\right)\left(x^2+x-1\right)\)

   Chúc bn hok tốt

24 tháng 8 2020

( x2 + x + 1 )( x2 + x + 2 ) - 6 (*)

Đặt x2 + x + 1 = t

(*) = t( t + 1 ) - 6

     = t2 + t - 6

     = t2 - 2t + 3t - 6

     = t( t - 2 ) + 3( t - 2 )

     = ( t - 2 )( t + 3 )

     = ( x2 + x + 1 - 2 )( x2 + x + 1 + 3 )

     = ( x2 + x - 1 )( x2 + x + 4 )

     

10 tháng 8 2015

\(=x^8-x^7+x^5-x^4+x^2+x^7-x^6+x^4-x^3+x+x^6-x^5+x^3-x^2+1\)

\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)+\left(x^6-x^5+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)