Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415
a) Ta có: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415
⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415
⇔x⋅34(1−15+15−19+19−113+...+181−185)=415⇔x⋅34(1−15+15−19+19−113+...+181−185)=415
⇔x⋅34(1−185)=415⇔x⋅34(1−185)=415
⇔x⋅6385=415⇔x⋅6385=415
hay x=68189x=68189
Vậy: x=68189
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\cdot\dfrac{84}{85}=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\cdot\dfrac{84}{85}=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)
\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)
hay \(x=\dfrac{68}{189}\)
Vậy: \(x=\dfrac{68}{189}\)
1/(1.5) + 1/(5.9) + 1/(9.13) + ... + 1/[x(x + 4)] = 21/85
1/4.[1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/x - 1/(x + 4)] = 21/85
1/4.[1 - 1/(x + 4)] = 21/85
1 - 1/(x + 4) = 21/85 : 1/4
1 - 1/(x + 4) = 84/85
1/(x + 4) = 1 - 84/85
1/(x + 4) = 1/85
x + 4 = 85
x = 85 - 4
x = 81
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> \(\left|x+\frac{1}{1\cdot5}\right|+\left|x+\frac{1}{5\cdot9}\right|+...+\left|x+\frac{1}{397\cdot401}\right|=100x\ge0\)
=> \(x\ge0\)
=> \(x+\frac{1}{1\cdot5}+x+\frac{1}{5\cdot9}+...+x+\frac{1}{397\cdot401}=100x\)
=> \(\left(x+x+...+x\right)+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+...+\frac{1}{397\cdot401}\right)=100x\)
Sau đấy tính vế phải, lấy 100x - vế trái x, rồi chuyển qua bài tìm x là xong, hơi dài đấy ^^
Học tốt ^^