Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}=\frac{y}{3}\Rightarrow x=\frac{5y}{3}\)
Thay \(\frac{x}{5}=\frac{y}{3}\Rightarrow x=\frac{5y}{3}\)
vào x2-y2=4\(\Rightarrow\)\(\left(\frac{5y}{3}\right)^2-y^2=4\)
\(\Leftrightarrow\frac{25y^2}{9}-y^2=4\)
\(\Leftrightarrow25y^2-9y^2=4\)
\(\Leftrightarrow16y^2=4\)
\(\Leftrightarrow y^2=\frac{1}{4}\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Rightarrow x=\frac{5\cdot\frac{1}{2}}{3}\)
\(\Leftrightarrow x=\frac{5}{6}\)
Ta có\(\frac{x}{5}=\frac{y}{3}\)
Suy ra \(\left(\frac{x}{5}\right)^2\)\(=\left(\frac{y}{3}\right)^2\)
Suy ra \(\frac{x^2}{25}=\frac{y^2}{9}\)
Suy ra \(\frac{x^2-y^2}{25-9}\)
MÀ \(x^2-y^2=4\)
Suy ra\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{4}{16}=\frac{1}{4}\)
Còn lại tự tính k nha
Lời giải:
$x^2-2x+y^2+4y+5+(2z-3)^2=0$
$\Leftrightarrow (x^2-2x+1)+(y^2+4y+4)+(2z-3)^2=0$
$\Leftrightarrow (x-1)^2+(y+2)^2+(2z-3)^2=0$
Vì $(x-1)^2\geq 0; (y+2)^2\geq 0; (2z-3)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(x-1)^2=(y+2)^2=(2z-3)^2=0$
$\Leftrightarrow x=1; y=-2; z=\frac{3}{2}$
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
\(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
=> Có 3 trường hợp
1) x - 1/5 = 0 => x = 1/5
2) y + 1/2 = 0 => y = -1/2
3) z - 3 = 0 => z = 3
Ta có :
Với x = 1/5
=> 1/5 + 1 = y + 2 = z + 3
=> y = -4/5 ; z = -9/5
Với y = -1/2
=> x + 1 = -1/2 + 2 = z + 3
=> x = 1/2 ; z = -3/2
Với z = 3
=> x + 1 = y + 2 = 3 + 3
=> x = 5 ; y = 4
vi (x-2)^2 va (y+5)^2luon lon hon hoac bang 0 voi moi x,y nen tong 2 cai se luon lon hon hoac bang 0 ma chung lai bang 0 nen tung cai mot se bang 0
ta se duoc x=2,y=-5