K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

Ta có : \(2x=3y+1\Rightarrow2x-3y=1\)

và \(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x}{5}=\frac{y}{3}=\frac{2x-3y}{10-9}=\frac{1}{1}=1\)

Khi đó : \(\frac{x}{5}=1\Rightarrow x=5\)

              \(\frac{y}{3}=1\Rightarrow y=3\)

Vậy x = 5 ; y = 3

3 tháng 12 2023

a)

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)

=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)

b)

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)

=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)

c)

Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)

=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)

d)

Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)

=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:

$3x+5(x+1)=13$
$8x+5=13$

$8x=8$

$x=1$

$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:

$2(y+5)-3y=4$

$-y+10=4$

$-y=-6$

$y=6$

$x=6+5=11$

c. Thay $y=x-2$ vô điều kiện đầu thì:

$-x+5(x-2)=-6$

$4x-10=-6$

$4x=10+(-6)=4$

$x=1$

$y=x-2=1-2=-1$

a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$

$2x=10$

$x=5$

$\Rightarrow y=x=5$

Vậy $(x,y)=(5,5)$

b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$

$5x=180$

$x=36$

$y=x=36$

Vậy $(x,y)=(36,36)$

c. Thay $y=2x$ vào điều kiện đầu thì:

$3x+5.2x=13$

$13x=13$

$x=1$

$y=2x=2$

Vậy $(x,y)=(1,2)$

 

a) Ta có: x=y

mà x+y=10

nên \(x=y=\dfrac{10}{2}=5\)

b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

25 tháng 6 2018

\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)

\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)

Các phần sau làm tương tự nhé

7 tháng 8 2023

a) Ta có: \(3x-y=13\) và \(2x-4y=60\)

Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)

Và: \(3x-y=13\Rightarrow6x-2y=26\) (2) 

Cộng (1) với (2) theo vế ta có:

\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)

\(\Rightarrow7x=56\)

\(\Rightarrow x=8\)

Ta tìm được y:

\(8+2y=30\)

\(\Rightarrow2y=22\)

\(\Rightarrow y=11\)

7 tháng 8 2023

Giúp mình với nhé! Mình đang cần

12 tháng 10 2019

2x = 5y 10z là sao ? Thiếu dấu ''='' à ?

12 tháng 10 2019

sửa chỗ 2x = 5y = 10z nhé 

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)

21 tháng 9 2017

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{2y}{14}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}=\frac{3x+5y-7z}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)

\(\frac{3x}{63}=\frac{10}{21}\Rightarrow x=\frac{10}{21}.63:3=10\)

\(\frac{5y}{70}=\frac{10}{21}\Rightarrow y=\frac{10}{21}.70:5=\frac{20}{3}\)

\(\frac{7z}{70}=\frac{10}{21}\Rightarrow z=\frac{10}{21}.70:7=\frac{100}{21}\)