Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
a/ \(A=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
\("="\Leftrightarrow x=1\)
b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=...\)
c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)
\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)
d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{\frac{4x}{x}}+4=8\)
\("="\Leftrightarrow x^2=4\Rightarrow x=...\)
e/ \(E=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
\("="\Leftrightarrow x+3=5-x\Rightarrow x=...\)
f/ \(F=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow2x+6=5-2x\Leftrightarrow x=...\)
Bài 3:
a: Thay x=2 và y=5 vào (d), ta được:
2(a-1)+1=5
=>2(a-1)=4
=>a-1=2
=>a=3
b: Thay x=-2 và y=0 vào (d), ta được:
-2(a-1)+1=0
=>-2a+2+1=0
=>-2a+3=0
=>a=3/2
c: (d1): y=2x+1
(d2): y=1/2x+1
Tọa độ giao là:
2x+1=1/2x+1 và y=2x+1
=>x=0 và y=1
=>B(0;1)
d: Tọa độ A là:
y=0 và 2x+1=0
=>x=-1/2; y=0
Tọa độ C là:
y=0 và 1/2x+1=0
=>y=0và x=-2
B(0;1); A(-1/2;0); C(0;-2)
\(BA=\sqrt{\left(-\dfrac{1}{2}-0\right)^2+\left(0-1\right)^2}=\dfrac{\sqrt{5}}{2}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-2-1\right)^2}=3\)
\(AC=\sqrt{\left(0+\dfrac{1}{2}\right)^2+\left(-2-0\right)^2}=\dfrac{\sqrt{17}}{2}\)
\(cos\widehat{BAC}=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=-\dfrac{7\sqrt{85}}{85}\)
=>\(sin\widehat{BAC}=\dfrac{6\sqrt{85}}{85}\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{\sqrt{5}}{2}\cdot\dfrac{\sqrt{17}}{2}\cdot\dfrac{6\sqrt{85}}{85}=\dfrac{6}{8}=\dfrac{3}{4}\)
Bạn ơi, bạn kiểm tra lại đề hộ mình nha. Lỗi $LATEX$ rồi nha bạn.
\(\left(y+\sqrt{1+y^2}\right)\left(x+\sqrt{1+x^2}\right)=1\)
\(\Leftrightarrow x+\sqrt{1+x^2}=\sqrt{1+y^2}-y\) (nhân liên hợp 2 vế)
Tương tự ta có: \(y+\sqrt{1+y^2}=\sqrt{1+x^2}-x\)
Cộng vế với vế:
\(x+y+\sqrt{1+x^2}+\sqrt{1+y^2}=\sqrt{1+y^2}+\sqrt{1+x^2}-x-y\)
\(\Rightarrow2\left(x+y\right)=0\)
\(\Rightarrow x+y=0\) \(\Rightarrow y=-x\)
\(P=x^7+\left(-x\right)^7+2\left(x^5+\left(-x\right)^5\right)-3\left(x^3+\left(-x\right)^3\right)+4\left(x-x\right)+100=100\)
Áp dụng đẳng thức: \(\frac{a}{b}=\frac{c}{d}=ad=bc\) để tìm x