Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow y\left(x+1\right)+2\left(x+1\right)+9=0\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=-9\)
Để x;y nguyên thì:
\(\left\{{}\begin{matrix}x+1=3\\y+2=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-3\\y+2=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=1\\y+2=-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-9\\y+2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-1\\y+2=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=9\\y+2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-3\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{2}{5}\left(4x-3\right)^2=-\dfrac{5}{18}\)
\(\Leftrightarrow\left(4x-3\right)^2=\dfrac{25}{36}\)
\(\Leftrightarrow4x-3\in\left\{\dfrac{5}{6};-\dfrac{5}{6}\right\}\)
hay \(x\in\left\{\dfrac{23}{24};\dfrac{13}{24}\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
x.y-x.2=0
=> x.y = 0 và x.2 = 0
=> x = 0 hoặc y = 0 và x = 0.
Vậy x = 0, y = 0
\(x+2⋮x^2\Rightarrow x+2⋮x.x\Rightarrow2⋮x\left(x+1\right)\Rightarrow x\in\left\{\mp1\right\}\)
shitbo thiếu trường hợp rồi nha bạn!
Để x + 2 chia hết cho x2 thì x + 2 chia hết cho x. Hay \(\frac{x+2}{x}\) nguyên.
Ta có: \(\frac{x+2}{x}=1+\frac{2}{x}\). Để \(\frac{x+2}{x}\) nguyên thì \(\frac{2}{x}\) nguyên hay \(x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vậy \(x=\left\{\pm1;\pm2\right\}\)
=> \(^{x^2}\)= 0-2
=> \(x^2\)= -2
=> x = (vô lý)
tk mk nha