Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\le\left|x\right|\le5\)
\(\Rightarrow\left|x\right|\ge0\)
Mà \(2\le\left|x\right|\le5\Rightarrow x\in\left\{\pm2;\pm3;\pm4;\pm5\right\}\)
Vậy :
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
Tìm x thuộc Z
2 < | x | < 4
2 lớn hơn hoặc bằng | x | <4
2 lớn hơn hoặc bằng | x | nhỏ hơn hoặc bằng 4
2<|x|<4 nên |x|=3 nên x=3 hoặc x=-3
2>=|x|<4 nên x rỗng
2>=|x|<=4 nên x rỗng
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
\(\left|x+2\right|\le5\)
\(\Rightarrow\left|x+2\right|\in\left\{0;1;2;3;4;5\right\}\)
\(\Rightarrow x+2\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)
:\(Th1:\left|x+2\right|=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
\(Th2:\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\)
\(Th2:\orbr{\begin{cases}x+2=2\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
\(Th3:\orbr{\begin{cases}x+2=3\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)
\(Th4:\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}}\)
\(Th5:\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
b) \(\left|x-1\right|>2\)
\(Th1:x-1>2\)
\(\Rightarrow x>3\)
\(Th2:-x+1>2\)
\(\Rightarrow x>-1\)
hok tốt!!