Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
1: Để A nguyên thì x+3-4 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2: Để B nguyên thì 2x+4-9 chia hết cho x+2
=>\(x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì:
$3x-1\vdots x-2$
$\Rightarrow 3(x-2)+5\vdots x-2$
$\Rightarrow 5\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$
Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì:
$3x-1\vdots x-2$
$\Rightarrow 3(x-2)+5\vdots x-2$
$\Rightarrow 5\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$
(ĐKXĐ: \(x\ne-2\) )
\(\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}\)
\(=\frac{2\left(x+2\right)}{x+2}-\frac{5}{x+2}=2-\frac{5}{x+2}\)
Để biểu thức \(\in Z\)<=> 5 chia hết (x+2)
<=> (x+2) \(\in\)Ư(5)={5;-5;1;-1}
*)x+2=5<=>x=3(Thỏa Mãn)
*)x+2=-5<=>x=-7(Thỏa Mãn)
*)x+2=1<=>x=-1(Thỏa Mãn)
*)x+2=-1<=>x=-3(Thỏa Mãn)
Vậy x\(\in\){3;-7;-3;-1} TMYCĐB
\(B=\frac{2x+4-5}{x+2}\)
\(B=2-\frac{5}{x+2}\)
Để B nguyên thì \(\frac{5}{x+2}\)phải là số nguyên
\(\Rightarrow5⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(x+2\right)\in\left\{+5,-5,+1,-1,0\right\}\)
\(\Rightarrow\left(x\right)\in\left\{+3,-7,-1,-3,-2\right\}\)
Vậy \(\left(x\right)\in\left\{+3,-7,-1,-3,-2\right\}\)
CHÚC BẠN HỌC TỐT