Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
A=7/x+3 -2 để A thuộc Z thì x+3 là ước của 7.
=>x+3=(+1,-1;+7,-7)
x=-2 =>A=5 x=4=>A=-1
x=-4=> A=-9 x=-10=>A=-3
\(B=\frac{1-2x}{x+3}=\frac{1-2x-6+6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
Để \(A=\frac{7}{x+3}-2\) là số nguyên <=> \(\frac{7}{x+3}\) là số nguyên
=> x + 3 thuộc Ư(7) = { - 7; - 1; 1; 7 }
+ ) Với x + 3 = - 7 thì x = - 10 (TM)
+ ) Với x + 3 = - 1 thì x = - 4 (TM)
+ ) Với x + 3 = 1 thì x = - 2 (TM)
+ ) Với x + 3 = 7 thì x = 4 (TM)
Vậy x = { - 10; - 4; - 2; 4 }
a) \(A=\dfrac{x+3}{x+2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)
\(\Rightarrow5⋮x-2\Rightarrow x-2\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\\x=7\\x=-3\end{matrix}\right.\)
b) \(B=\dfrac{1-2x}{x+3}=\dfrac{-2x+1}{x+3}\)
\(B\in Z\Rightarrow-2x+1⋮x+3\)
\(\Rightarrow-2x-6+7⋮x+3\)
\(\Rightarrow-2\left(x+3\right)+7⋮x+3\)
\(\Rightarrow7⋮x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3-1\\x+3=7\\x+3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\\x=4\\x=-10\end{matrix}\right.\)
\(A=\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)
Để \(A\in Z\) thì \(x-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy \(x\in\left\{3;1;7;-3\right\}\) thì \(A\in Z\)
\(B=\dfrac{1-2x}{x+3}=\dfrac{-2x-6+7}{x+3}=\dfrac{-2\left(x+3\right)-7}{x+3}=-2+\dfrac{-7}{x+3}\)
Để \(B\in Z\) thì \(x+3\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;10\right\}\)
Vậy \(x\in\left\{-2;-4;4;10\right\}\) thì \(B\in Z\)