Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a) 3-5+(-x+3)=6`
`=>5+(-x+3)=3-6`
`=>5+(-x+3)=-3`
`=>-x+3=-3-5`
`=>-x+3=-8`
`=>-x=-8-3`
`=>-x=-11`
`=>x=11`
__
`b)(-4-x)+(4-15)=-15`
`=>(-4-x)+-11=-15`
`=>-4-x=-15-(-11)`
`=>-4-x=-15+11`
`=>-4-x=-4`
`=>x=-4-(-4)`
`=>x=-4+4`
`=>x=0`
`c)(11+x)-(-11-9)=32`
`=>(11+x)-(-20)=32`
`=>(11+x)+20=32`
`=>11+x=32-20`
`=>11+x=12`
`=>x=12-11`
`=>x=1`
`a)3-5+(-x+3)=6`
`5+(-x+3)=3-6`
`5+(-x+3)=-3`
`-x+3=-3-5`
`-x+3=-8`
`-x=-8-3`
`-x=-11`
`x=11`
`b,(-4-x)+(4-15)=-15`
`(-4-x)+(-11)=-15`
`-4-x=-15-(-11)`
`-4-x=-15+11`
`-4-x=-4`
`x=-4-(-4)`
`x=-4+4`
`x=0`
`c)(11+x)-(-11-9)=32`
`(11+x)-(-20)=32`
`(11+x)+20=32`
`11+x=32-20`
`11+x=12`
`x=12-11`
`x=1`
Bài 2 : a, x = -36/9 = -4
b, đề sai
c, <=> -2 =< x =< -3 => x = -1
Bài 1:
a: 2/8=9/36; 2/9=8/36; 8/2=36/9; 9/2=36/8
b: -2/4=9/-18; -2/9=4/-18; 4/-2=-18/9; 9/-2=-18/4
Bài 2:
a: =>x/3=-4/3
hay x=-4
Câu b đề sai rồi bạn
a: \(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)
=>x=-3; y=28; z=-60
b: 5/12=x/-72
=>x=-72*5/12=-6*5=-30
c: =>x+3=-5
=>x=-8
-29-9(2x-1)\(^2\)= -110
(=) 9(2x-1)2 = (-29) +110
(=) 9(2x-1)2 = 81
(=) (2x-1)2 =81: 9
(=) (2x-1)2 =9
(=) (2x-1)2 = 32 =(-3)2
\(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\2x=-2\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
vậy : ........
a,\(-29-9\left(2x-1\right)^2=-110\)
\(=>-29+110=9.\left(2x-1\right)^2\)
\(=>81=9.\left(2x-1\right)^2\)
\(=>\left(2x-1\right)^2=9\)
\(=>\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}=>\orbr{\begin{cases}x=\frac{4}{2}=2\\x=\frac{-2}{2}=-1\end{cases}}}\)
a)
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)=0\)
\(x+x+2+x+4+...+x+98=0\)
\(50x+\left(98+2\right).\left[\left(98-2\right):2+1\right]:2=0\)
\(50x+100.49:2=0\)
\(50x+49.50=0\)
\(50x=0-49.50\)
\(50x=-2450\)
\(x=-2450:50\)
\(x=-49\)
b)
\(\left(x-5\right)+\left(x-4\right)+\left(x-3\right)+...+\left(x+11\right)+\left(x+12\right)=99\)
\(x+x+x+...+x-5-4-3-...+11+12=99\)
\(18x+6+7\text{+ 8 + 9 + 10 + 11 + 12 = 99}\)
\(18x+63=99\)
\(18x=99-63\)
\(18x=36\)
\(x=36:18\)
\(x=2\)
\(a,\left(2x-5\right)+17=6\\ \Rightarrow2x-5=-11\\ \Rightarrow2x=-6\\ \Rightarrow x=-3\\ b,10-2\left(4-3x\right)=-4\\ \Rightarrow2\left(4-3x\right)=14\\ \Rightarrow4-3x=7\\ \Rightarrow3x=-3\\ \Rightarrow x=-1\\ c,24:\left(3x-2\right)=-3\\ \Rightarrow3x-2=-8\\ \Rightarrow3x=-6\\ \Rightarrow x=-2\\ d,5-2x=-17+12\\ \Rightarrow5-2x=-5\\ \Rightarrow2x=10\\ \Rightarrow x=5\)
a: =>2x-5=-11
=>2x=-6
hay x=-3
b: =>2(4-3x)=14
=>4-3x=7
=>3x=-3
hay x=-1
c: =>3x-2=-8
=>3x=-6
hay x=-2
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3