Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:x> hoặc = 2018
=>2018+2018-x=x
=>2x=2018*2
=>x=2018
\(2018+\left|2018-x\right|=x\)\(\Leftrightarrow\)\(\left|2018-x\right|=x-2018\)
+) Với \(\hept{\begin{cases}2018-x\ge0\\x\le2020\end{cases}\Leftrightarrow x\le2018}\) ta có :
\(2018-x=x-2018\)\(\Leftrightarrow\)\(x=2018\) ( nhận )
+) Với \(\hept{\begin{cases}2018-x< 0\\x\le2020\end{cases}\Leftrightarrow2018< x\le2020}\) ta có :
\(-\left(2018-x\right)=x-2018\)\(\Leftrightarrow\)\(x=x\) ( đúng với mọi \(2018< x\le2020\) )
Từ 2 trường hợp trên ta suy ra \(2018\le x\le2020\)
Mà \(x\inℤ\) nên \(x\in\left\{2018;2019;2020\right\}\)
Vậy \(x\in\left\{2018;2019;2020\right\}\)
tham khảo nhé :> nhớ cảm ơn nhẹ cái cho có động lực cứu nhân độ thế :v
Ta có:|2018-x|=2018-x<=>\(2018-x\ge0\Leftrightarrow2018\ge x\)
\(\left|2018-x\right|=x-2018\Leftrightarrow x-2018< 0\Leftrightarrow x< 2018\)
Với \(x\le2018\),thì:
\(2018+\left|2018-x\right|=x\)
\(\Rightarrow2018+2018-x=x\)
\(\Rightarrow x=2018\)
Với:\(\left|2018-x\right|=x-2018\)
\(\Rightarrow2018+\left|2018-x\right|=x\)
....
(x-5)^2018>=0
y+1)^2018>=0
=>(x-5)^2018+(y+1)^2018>=0
dấu = xảy ra <=>x=5;y=-1
Bài 1 :
\(3x+5=2\left(x-\frac{1}{4}\right)\)
\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)
\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)
\(\Leftrightarrow\frac{11}{2}=-x\)
\(\Leftrightarrow\frac{-11}{2}=x\)
Vậy \(x=\frac{-11}{2}\)
Bài 2:
a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)
\(\Leftrightarrow x+\frac{19}{5}=0\)
\(\Leftrightarrow x=\frac{-19}{5}\)
\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)
\(\Leftrightarrow y+\frac{2018}{2019}=0\)
\(\Leftrightarrow y=\frac{-2018}{2019}\)
\(\Rightarrow+,\left|z-3\right|=0\)
\(\Leftrightarrow z-3=0\)
\(\Leftrightarrow z=3\)
Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)
b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)
Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow x\inℚ\)
\(\Rightarrow+,\left|2y+4\right|\ge0\)
\(\Rightarrow y\inℚ\)
\(\Rightarrow+,\left|z-5\right|\ge0\)
\(\Rightarrow z\inℚ\)
Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
\(\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\le0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(24-4y\right)^{2018}\ge0;\forall x,y\\\left|x^2-4\right|^{2019}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(24-4y\right)^{2018}+\left|x^2-4\right|^{2019}\ge0;\forall x,y\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}\left(24-4y\right)^{2018}=0\\\left|x^2-4\right|^{2019}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6\\x=\pm2\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(2;6\right);\left(-2;6\right)\right\}\)