K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2015

1/3+1/6+1/10+...+1/x*(2x+1)=1999/2001

2/6+2/12+...2/x(x+1)=1999/2001

2[1/2*3+1/3*4+...+1/x(x+1)]=1999/2001

1/2-1/3+1/3-1/4+...+1/x-1/x+1=1999/2001:2

(1/2-1/x+1)+(1/3-1/3)+...+(1/x-1/x)=1999/4002

1/2-1/x+1=1999/4002

1/x+1=1/2-1999/4002

1/x+1=1/2001

=>(x+1)=2001

x=2001-1

x=2000

Vậy x=2000

19 tháng 12 2017

(*) <=> 1\6 + 1\12 +.. + 1\x.(x+1) = 2009\(2011.2) 
ma 
1\2.3 =1\2-1\3 
1\3.4=1\3-1\4 
............... 
1\x(x+1)= 1\x-1\(x+1) 

cong tung ve ta dc 

Vt= 1\2- 1\(x+1) =2009\(2.2011) 

<=> 2011\(2.2011) -2009\(2.2011) =1\(x+1) 

<=> 1\2011 =1\(x+1) 

=> x=2010

19 tháng 12 2017

1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 1999/2001

nhân 1/2 vào 2 vế ta được vế trái là :

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{x-1}{\left(x+1\right)}=\frac{1999}{2001}\)

suy ra : 2001x - 2001 = 1999x + 1999

2x = 1999 + 2001 = 4000

=> x = 2000

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

Ta có A = 1/2×5 -1/5×8 -1/8×11 -1/11×14 -1/14×17 -1/17*20

=>A3= 3/2×5 -3/5×8 -3/8×11 -3/11×14 -3/14×17 -3/17×20

=>A3= 1/2 -1/5 -1/5 +1/8 -1/8 +1/11 -1/11+1/14 -1/14 +1/17 -1/17 +1/20

=>A3= 1/2 -1/5-1/5+1/20

=>A3= 10/20 -4/20 -4/20 +1/20= 3/20

=>A=3/20:3

=> A =1/20 

Có j ko hiu hỏi mk nha

4 tháng 3 2019

giúp mk bài dưới dc k

24 tháng 7 2017

bộ định không làm bài tập về nhà à , thấy bài cái là lên hỏi

25 tháng 7 2017

có làm nhưng mà quên cách òi giúp cái coi

7 tháng 7 2019

a)\(\frac{-15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\) 

  \(\frac{-5}{6}-x+\frac{2}{6}=\frac{25}{27}\)

  \(\frac{-1}{2}-x=\frac{25}{27}\) 

             \(x=\frac{-77}{54}\) 

Vậy............

b) \(\frac{-3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)

   \(\frac{-12}{20}-2x+\frac{1}{20}=\frac{15}{20}\) 

   \(\frac{-11}{20}-2x=\frac{15}{20}\)

                   \(2x=\frac{-13}{10}\) 

                  \(x=\frac{-13}{20}\) 

Vậy.............

1.

\(a,-\frac{15}{18}-\left(x-\frac{1}{3}\right)=\frac{25}{27}\)

\(-\frac{5}{6}-x+\frac{2}{6}=\frac{25}{27}\)

\(-\frac{1}{2}-x=\frac{25}{27}\)

\(x=-\frac{77}{54}\)

\(b,-\frac{3}{5}-\left(2x-\frac{1}{20}\right)=\frac{3}{4}\)

\(-\frac{12}{20}-2x+\frac{1}{20}=\frac{15}{20}\)

\(-\frac{11}{20}-2x=\frac{15}{20}\)

\(2x=-\frac{13}{10}\)

\(x=-\frac{13}{20}\)

2.

\(a,-\frac{5}{6}\)và \(1,2\)

\(=-\frac{5}{6}\)và \(\frac{12}{10}\)

\(=-\frac{50}{60}\)và \(\frac{72}{60}\)

Nếu như quy đồng 2 số lên thì ta đc \(-\frac{50}{60}< \frac{72}{60}\)

\(\Rightarrow-\frac{5}{6}\)\(< 1,2\)

\(b,\frac{15}{16}\)và \(\frac{17}{18}\)

Theo như những bài toán đã hc thìn ội dung ở cuối bài là phân số nào có tử bé hơn thì có phân số lớn hơn phân số có tử lớn hơn 

\(\Rightarrow\frac{15}{16}>\frac{17}{18}\)

\(c,\frac{1999}{2000}\)và \(\frac{2000}{2001}\)

Ta quy đồng 

Đc

\(\frac{3999999}{4002000}\)và \(\frac{4000000}{4002000}\)

\(\Rightarrow\frac{1999}{2000}< \frac{2000}{2001}\)