Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây ne`h bn, mk giải ở đây:
http://olm.vn/hoi-dap/question/171228.html
Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có một hoặc ba thừa số bé hơn 0
Mà \(x^2-10< x^2-7< x^2-4< x^2-1\)
Trường hợp có một thừa số bé hơn 0 :
\(\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7;x^2-4;x^2-1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Leftrightarrow7< x^2< 10\)
\(\Rightarrow\)\(x^2=9\)
\(\Rightarrow\)\(x=\pm3\)
Trường hợp có ba thừa số bé hơn 0 :
\(\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Leftrightarrow1< x^2< 4\) ( loại vì \(x\inℤ\) )
Vậy \(x=3\) hoặc \(x=-3\)
Học tốt
a) Với \(x\le-1\)thì \(x+1\le0;x-2\le0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\le-1\)
Với \(x\ge2\)thì \(x+1\ge0;x-2\ge0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\ge2\)
Với \(-1< x< 2\)thì \(x+1>0;x-2< 0\Rightarrow\left(x+1\right)\left(x-2\right)< 0;\)TMĐK.
Vậy \(-1< x< 2\)và \(x\in Q\)là nghiệm của a).
b) Tương tự, có \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)và \(x\in Q\)là nghiệm của b).
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
b, \(\left(-\frac{4}{3}\right)-\frac{2}{5}-\frac{3}{2}=-\frac{40}{30}-\frac{12}{30}-\frac{45}{30}=-\frac{97}{30}\)
c, \(\frac{4}{5}+\frac{2}{7}-\frac{7}{10}=\frac{56}{70}+\frac{20}{70}-\frac{49}{70}=\frac{27}{70}\)
d, \(\frac{2}{3}-\left[\left(-\frac{7}{4}\right)-\left(\frac{4}{8}+\frac{3}{8}\right)\right]=\frac{2}{3}-\left[\left(-\frac{7}{4}\right)-\frac{7}{8}\right]=\frac{2}{3}--\frac{21}{8}=\frac{2}{3}+\frac{21}{8}=3\frac{7}{24}\)
tính lại mt cko chắc ăn nha
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)\)
Mà a+b+c = 0 nên a + c = -b
a + b = -c
b + c = -a
\(A=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
2x(x - 1/7) = 0 => trường hợp 1 : 2x = 0 => x=0 => trường hợp 2 : x - 1/7 = 0 => x=1/7 Vậy x thuộc {0;1/7} thì thỏa mãn đề bài